Mathematical Background

Yuh-Jye Lee

Data Science \& Machine Intelligence Lab Dept. of Applied Math © NCTU

February 21, 2017
(1) Linear Algebra
(2) Multi-variable Calculus
(3) Probability and Statistics
(4) Probability and Inference

Outline

(1) Linear Algebra

(2) Multi-variable Calculus

(3) Probability and Statistics

4 Probability and Inference

Norm

Definition

A norm is a function $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ which must satisfy the following three conditions:
(1) $\|x\| \geq 0$, and $\|x\|=0$ only if $x=0$,
(2) $\|x+y\| \leq\|x\|+\|y\|$,
(3) $\|\alpha x\|=|\alpha|\|x\|$.

Variants of Norm

- The most popular vector norms are defined below.
- The closed unit ball $\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$ corresponding to each norm is illustrated to the right for the case $n=2$.

$$
\begin{aligned}
& \|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \\
& \|x\|_{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}}=\sqrt{x^{\top} x}, \\
& \|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| \\
& \|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} \quad(1 \leq p \leq \infty)
\end{aligned}
$$

Positive Definite Matrices

Definition

An $n \times n$ real symmetric matrix M is positive definite if $z^{\top} M z>0$ for all non-zero vectors $z \in \mathbb{R}^{n}$.

- Characteristics
- All eigenvalues λ of M are positive.
- There exists a unique lower triangular matrix L, with strictly positive diagonal elements, that allows the factorization of M into $M=L L^{\top}$. This factorization is called Cholesky decomposition.

Eigenvalues and Eigenvectors

Definition

Given a linear transformation A, a non-zero vector x is defined to be an eigenvector of the transformation if it satisfies the eigenvalue equation

$$
A x=\lambda x
$$

for some scalar λ. In this situation, the scalar λ is called an eigenvalue of A corresponding to the eigenvector x.

- You can type eigshow in MATLAB to see the graphical demonstration of eigenvalues.

Diagonalization

A matrix $A_{n \times n}$ with n real eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and their associated eigenvectors $q_{1}, q_{2}, \ldots, q_{n}$ can be diagonalized as follows:

$$
A=Q \wedge Q^{\top}
$$

where

$$
\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right), Q=\left[q_{1}\left|q_{2}\right| \ldots q_{n}\right]
$$

- The eigenvectors are the principal components. Extremely important in Machine Learning

Cholesky Factorization

- A matrix decomposition makes $A_{n \times n}=R_{n \times n}^{\top} R_{n \times n}$, where R is an upper-triangular matrix.
- The matrix A must be positive definite.

$$
\begin{align*}
A & =\left[\begin{array}{cc}
a_{11} & w^{t} \\
w & K
\end{array}\right] \tag{1}\\
& =\left[\begin{array}{ll}
\alpha & 0 \\
\frac{w}{\alpha} & l
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & K-\frac{w w^{\top}}{a_{11}}
\end{array}\right]\left[\begin{array}{cc}
\alpha & \frac{w}{\alpha} \\
0 & l
\end{array}\right] \tag{2}\\
& =R_{1}^{\top} A_{1} R_{1} \tag{3}\\
& =R_{1}^{\top} R_{2}^{\top} \cdots R_{m}^{\top} R_{m} \cdots R_{2} R_{1} \tag{4}\\
& =R^{\top} R \tag{5}
\end{align*}
$$

QR Factorization

- A matrix decomposition makes $A_{m \times n}=Q_{m \times m} R_{m \times n}$, where $Q^{\top} Q=I_{m \times m}$ and R is an upper-triangular matrix.
- QR factorization can be computed by Gram-Schmidt process and Householder transformations.
- Note: A matrix Q is called orthogomal matrix if $Q^{\top} Q=I$
- For a rectangular matrix:

$$
A_{m \times n}=Q_{m \times m} R_{m \times n}=\left[\begin{array}{ll}
\hat{Q}_{m \times n} & Q_{m \times(m-n)}^{0}
\end{array}\right]\left[\begin{array}{c}
\hat{R}_{n \times n} \\
0
\end{array}\right]=\hat{Q}_{m \times n} \hat{R}_{n \times n}
$$

- $A=\hat{Q} \hat{R}$ is the reduced QR factorization

Singular Value Decomposition (SVD)

- A matrix decomposition makes $A_{m \times n}=U_{m \times m} \Sigma_{m \times n} V_{n \times n}^{\top}$, where $U^{\top} U=I_{m \times m}$ and $V^{\top} V=I_{n \times n}$.
- U and V are the eigenvectors of $A A^{\top}$ and $A^{\top} A$ respectively.
- For a rectangular matrix:

$$
A=U \Sigma V^{\top}=\left[\begin{array}{ll}
\hat{U}_{m \times n} & U_{m \times(m-n)}^{0}
\end{array}\right]\left[\begin{array}{c}
\hat{\Sigma}_{n \times n} \\
0
\end{array}\right] V=\hat{U}_{m \times n} \hat{\Sigma}_{n \times n} V_{n \times n}^{\top}
$$

- $A=\hat{U} \hat{\Sigma} V^{\top}$ is the reduced SVD.
- SVD is the Latent Semantic Indexing (LSI) in Text Mining when A is a term by document matrix

Least Squares Problem

- Given $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^{m}$, a linear system with $m>n$:

$$
\begin{equation*}
A w=y \tag{6}
\end{equation*}
$$

is called an overdetermined linear system.

- In general, an overdetermined linear system has no solution.

An approximated solution can be obtained by solving the following minimization problem.

$$
\begin{equation*}
\min _{w \in \mathbb{R}^{n}} r^{\top} r=\min _{w \in \mathbb{R}^{n}}\|r\|_{2}^{2}=\min _{w \in \mathbb{R}^{n}} \sum_{i=1}^{m}\left(y_{i}-A_{i} w\right)^{2} \tag{7}
\end{equation*}
$$

where $r=y-A w \in \mathbb{R}^{m}$ is the residual.

- The minimization problem (7) is the formulation of least squares problem.

Example: Data Fitting

Suppose we want to fit the data

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{m}, y_{m}\right)
$$

with a straight line $y=w_{0}+w_{1} x$.

Example: Data Fitting

This problem can be expressed as the following overdetermined linear system:

$$
\begin{aligned}
y_{1} & =w_{0}+w_{1} x_{1} \\
y_{2} & =w_{0}+w_{1} x_{2} \\
& \vdots \\
y_{m} & =w_{0}+w_{1} x_{m}
\end{aligned}
$$

or

$$
\left[\begin{array}{cc}
1 & x_{1} \tag{8}\\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{m}
\end{array}\right]\left[\begin{array}{l}
w_{0} \\
w_{1}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
$$

or

$$
A w=y .
$$

A vector w minimizes the residual norm $\|r\|_{2}=\|y-A w\|_{2}$, thereby solving the least squares problem if and only if $r \perp$ range (A), that is,

$$
A^{\top} r=0
$$

or equivalently,

$$
A^{\top} A w=A^{\top} y,
$$

or equivalently,

$$
P y=A w,
$$

where $P=A\left(A^{\top} A\right)^{-1} A^{\top}$ is a orthogonal projection and w is unique iff A is full rank $\left(w=\left(A^{\top} A\right)^{-1} A^{\top} y\right)$.

Outline

(1) Linear Algebra

(2) Multi-variable Calculus
(3) Probability and Statistics

4 Probability and Inference

Gradient

Definition

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function. The gradient of function f at a point $x \in \mathbb{R}^{n}$ is defined as

$$
\nabla f(x)=\left[\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right] \in \mathbb{R}^{n}
$$

- The gradient vector $\nabla f(x)$ gives the direction of fastest increase of f.
- Example

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =x_{1}^{2}+x_{2}^{2}-2 x_{1}+4 x_{2} \\
\nabla f\left(x_{1}, x_{2}\right) & =\left[\begin{array}{ll}
2 x_{1}-2 & 2 x_{2}+4
\end{array}\right]
\end{aligned}
$$

Hessian

Definition

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a twice differentiable function. The Hessian matrix of f at a point $x \in \mathbb{R}^{n}$ is defined as

$$
\nabla^{2} f(x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{\prime} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

- Hessian matrix describes the local curvature of a function
- Example

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =x_{1}^{2}+x_{2}^{2}-2 x_{1}+4 x_{2} \\
\nabla^{2} f(x) & =\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
\end{aligned}
$$

Connection to Maximum and Minimum Values

First-Order Necessary Conditions

If x^{*} is a local minimizer and f is continuously differentiable in an open neighborhood of x^{*}, then $\nabla f\left(x^{*}\right)=0$.

Second-Order Necessary Conditions

If x^{*} is a local minimizer and $\nabla^{2} f$ exists and is continuous in an open neighborhood of x^{*}, then $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive semidefinite.

Second-Order Sufficient Conditions

Suppose that $\nabla^{2} f$ is continuous in an open neighborhood of x^{*} and that $\nabla f\left(x^{*}\right)=0$, and $\nabla^{2} f\left(x^{*}\right)$ is positive definite. Then x^{*} is a strict local minimizer of f.

Revisit Least Squares Problem

- Given $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^{m}$, a linear system with $m>n$:

$$
\begin{equation*}
A w=y \tag{9}
\end{equation*}
$$

is called an overdetermined linear system.

- Try to find an approximation solution with the "smallest residual"

$$
\begin{equation*}
\min _{w \in \mathbb{R}^{n}}\|r\|_{2}^{2}=\min _{w \in \mathbb{R}^{n}} \sum_{i=1}^{m}\left(y_{i}-A_{i} w\right)^{2}=\min _{w \in \mathbb{R}^{n}} f(w) \tag{10}
\end{equation*}
$$

- Let $\nabla f(w)=\mathbf{0}$ we can have the normal equation

Outline

(1) Linear Algebra

(2) Multi-variable Calculus
(3) Probability and Statistics

4 Probability and Inference

Random Variable

Definition

A random variable is a real-valued function for which domain is a sample space

- Example

For a coin toss, the possible outcome is head or tail. The number of heads appearing in one fair coin toss can be described using the following random variable:

$$
X= \begin{cases}1, & \text { if head } \\ 0, & \text { if tail }\end{cases}
$$

with probability function given by:

$$
P(X=x)= \begin{cases}\frac{1}{2}, & \text { if } x=1 \\ \frac{1}{2}, & \text { if } x=0 \\ 0, & \text { sotherwise }\end{cases}
$$

Probability Distribution

Definition

If X is discrete random variable, the function given by $P(X=x)$ for each x within the range of X is called probability distribution of X.

- Example

Let the random variable X be denoted as the total number of heads. The probability distribution of heads obtained in the four tosses of a fair coin can be written as follows:

$$
P(X=x)=\frac{\binom{4}{x}}{2^{4}}, \text { for } x=0,1,2,3,4 .
$$

Probability Density Distribution

Definition

A function with values $f(x)$, defined over the set of all real numbers, is called a probability density function of the continuous random variable X if and only if

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x,
$$

for any real constants a and b with $a \leq b$

- Example

The p.d.f of normal distribution is defined as follows:

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

where μ is the mean and σ is the standard deviation.

Conditional Probability

Definition

The conditional probability of an event A, given that an event B has occurred, is equal to

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- Example

Suppose that a fair die is tossed once. Find the probability of a 1 (event A), given an odd number was obtained (event B).

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 6}{1 / 2}=\frac{1}{3}
$$

- Restrict the sample space on the event B

Theorem

Assume that $\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ is a partition of S such that $P\left(B_{i}\right)>0$, for $i=1,2, \ldots, k$. Then
$P(A)=\sum_{i=1}^{k} P\left(A \mid B_{i}\right) P\left(B_{i}\right)$.

- Note that $\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ is a partition of S if
(1) $S=B_{1} \cup B_{2} \cup \ldots \cup B_{k}$
(2) $B_{i} \cap B_{j}=\emptyset$ for $i \neq j$

Bayes' Rule

Bayes' Rule

Assume that $\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ is a partition of S such that $P\left(B_{i}\right)>0$, for $i=1,2, \ldots, k$. Then

$$
P\left(B_{j} \mid A\right)=\frac{P\left(A \mid B_{j}\right) P\left(B_{j}\right)}{\sum_{i=1}^{k} P\left(A \mid B_{i}\right) P\left(B_{i}\right)} .
$$

Expected Value

Definition

If X is a discrete random variable and $P(X=x)$ is the value of its probability distribution at x, the expected value of X is

$$
\mu=E(X)=\sum_{x} x \cdot P(X=x) .
$$

Correspondingly, if X is a continuous random variable and $f(x)$ is the value of its probability density at x, the expected value of X is

$$
E(X)=\int_{-\infty}^{\infty} x \cdot f(x) d x
$$

- $E(a X+b Y)=a E(X)+b E(Y)$, linear operator

Variance

Measures of how far a set of numbers are spread out

Definition

If X is a discrete random variable and $P(X=x)$ is the value of its probability distribution at x, the expected value of X is

$$
\operatorname{Var}(X)=E\left([X-E(X)]^{2}\right)=\sum_{x}(x-\mu)^{2} \cdot P(X=x) .
$$

Correspondingly, if X is a continuous random variable and $f(x)$ is the value of its probability density at x, the expected value of X is

$$
\operatorname{Var}(X)=\int_{-\infty}^{\infty}(x-\mu)^{2} \cdot f(x) d x
$$

- $\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}$

Bernoulli Distribution

A trial is performed whose outcome is either a "success" or a "failure". The random variable X is a $0 / 1$ indicator variable and takes the value 1 for a success outcome and is 0 otherwise. p is the probability that the result of trail is a success. Then

$$
P(X=1)=p \text { and } P(X=0)=1-p
$$

which can equivalently be written as

$$
P(X=i)=p^{i}(1-p)^{1-i}, \quad i=0,1
$$

Tossing a fair coin, the parameter $p=0.5$. If X is Bernoulli,
(1) $E(X)=p$,
(2) $\operatorname{Var}(X)=p(1-p)$
(3) Who knows p ?

Probability and Inference

- The outcome of tossing a coin is $\{$ Heads, Tails $\}$
- We use a random variable $X \in\{0,1\}$ to indicate the outcome
- Suppose that we have a random sample: $\mathbf{X}=\left\{x^{t}\right\}_{t=1}^{N}$
- How to estimate the parameter p ?

Maximum Likelihood Estimation

Likelihood Function

The probability to observe the random sample $\mathbf{X}=\left\{x^{t}\right\}_{t=1}^{N}$ is

$$
\prod_{t=1}^{N} p^{x^{t}}(1-p)^{1-x^{t}}
$$

Why don't we choose the parameter p which will maximize the probability for observing the random sample $\mathbf{X}=\left\{x^{t}\right\}_{t=1}^{N}$?

Based on MLE, we will choose the parameter p

$$
p=\frac{\sum_{t=1}^{N} x^{t}}{N}
$$

Sample Mean, Variance, and Standard deviation

Sample Mean

The mean of a sample of n measured responses $y_{1}, y_{2}, \ldots, y_{n}$ is given by

$$
\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

The corresponding population mean is denoted by μ.

Sample Variance

The variance of a sample of measurements $y_{1}, y_{2}, \ldots, y_{n}$ is given by

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} .
$$

The corresponding population variance is denoted by σ^{2}.

Applying Baye's Rule to Classification

Credit Cards Scoring: Low-risk vs. High-risk

- According to the past transactions, some customers are low-risk in that they paid back their loan and the bank profited from them and other customers are high-risk in that they defaulted.
- We would like to learn the class "high-risk customer"
- We observe customer's yearly income and savings, which we represent by two random variables X_{1} and X_{2}
- The credibility of a customer is denoted by a Bernoulli random variable C where $C=1$ indicates a high-risk customer and $C=0$ indicated a low-risk customer

Applying Baye's Rule to Classification

How to make the decision when a new application arrives?

- When a new application arrives with $X_{1}=x_{1}$ and $X_{2}=x_{2}$
- If we know the probability of C conditioned on the observation $X=\left[x_{1}, x_{2}\right]$ our decision will be
- $C=1$ if $P\left(C=1 \mid\left[x_{1}, x_{2}\right]\right)>0.5$
- $C=0$ otherwise
- The probability of error we made based on this rule is

$$
1-\max \left\{P\left(C=1 \mid\left[x_{1}, x_{2}\right]\right), P\left(C=0 \mid\left[x_{1}, x_{2}\right]\right)\right\}<0.5
$$

- Please note $P\left(C=1 \mid\left[x_{1}, x_{2}\right]\right)+P\left(C=0 \mid\left[x_{1}, x_{2}\right]\right)=1$

The Posterior Probability: $P(C \mid \mathbf{x})=\frac{P(C) P(\mathbf{x} \mid C)}{P(\mathbf{x})}$

- $P(C=1)$ is called the prior probability that $C=1$
- In our example, it corresponds to a probability that a customer is high-risk, regardless of the \mathbf{x} value.
- It is called the prior probability because it is the knowledge we have before looking at the observation \mathbf{x}
- $P(\mathbf{x} \mid C)$ is called the class likelihood and is the conditional probability that an event belonging to the class C has the associated observation value \mathbf{x}
- $P(\mathbf{x})$, the evidence is the probability that an observation \mathbf{x} to be seen, regardless of whether it is a positive or negative example

All above information can be extracted from the past transactions (historical data)

The Posterior Probability: $P(C \mid \mathrm{x})=\frac{P(C) P(x) C)}{P(x)}$

- Because of normalization by the evidence, the posteriors sum up to 1
- In our example, $P\left(X_{1}, X_{2}\right)$ is called the joined probability of two random variables X_{1} and X_{2}
- Under the assumption, these two random variables X_{1} and X_{2} are probability independent, we have $P\left(X_{1}, X_{2}\right)=P\left(X_{1}\right) P\left(X_{2}\right)$
- It is one of key assumptions of Naive Bayes' Classifier
- Although it is over simplified the problem it is very easy to use for real applications

Extend to Multi-class classification

- We have K mutually and exhaustive classes;

$$
C_{i}, i=1,2, \ldots, K
$$

- For example, in optical digit recognition, the input is a bitmap image and there are 10 classes
- We can think of that these K classes define a partition of the input space
- Please refer to the slides of the Partition Theorem and Baye's Rule
- The Bayes' classifier choose the class with the highest posterior probability; that is we choose C_{i} if

$$
P\left(C_{i} \mid \mathbf{x}\right)=\max _{k} P\left(C_{k} \mid \mathbf{x}\right)
$$

- Question: Is it very important to have $P(\mathbf{x})$, the evidence?

