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Linear Algebra

Norm

A norm is a function || - || : R” — R which must satisfy the
following three conditions:

Q |[x|| >0, and ||x|| =0 only if x =0,
Q [Ix+yll <lixll +liyll
Q |lax]| = |all|x].




Linear Algebra

Variants of Norm

@ The most popular vector norms are defined below.

@ The closed unit ball {x € R": ||x|| < 1} corresponding to
each norm is illustrated to the right for the case n = 2.
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Linear Algebra

Positive Definite Matrices

Definition

An n x n real symmetric matrix M is positive definite if z" Mz > 0
for all non-zero vectors z € R".

@ Characteristics

o All eigenvalues A of M are positive.

e There exists a unique lower triangular matrix L, with strictly
positive diagonal elements, that allows the factorization of M
into M = LLT. This factorization is called Cholesky
decomposition.
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Linear Algebra

Eigenvalues and Eigenvectors

Definition

Given a linear transformation A, a non-zero vector x is defined to
be an eigenvector of the transformation if it satisfies the eigenvalue
equation

Ax = Ax

for some scalar A. In this situation, the scalar A is called an
eigenvalue of A corresponding to the eigenvector x.

@ You can type eigshow in MATLAB to see the graphical
demonstration of eigenvalues.




Linear Algebra

Diagonalization

A matrix Apxp with n real eigenvalues A, Ao, ..., Ay and their
associated eigenvectors g1, g2, ..., g, can be diagonalized as
follows:

A=QAQ',
where

A = diag(A1, A2, ..., An), Q = [q1]q2|. .. qn]

@ The eigenvectors are the principal components. Extremely
important in Machine Learning



Linear Algebra

Cholesky Factorization

@ A matrix decomposition makes A,x, = R,,TX,,R”X,,, where R is
an upper-triangular matrix.

@ The matrix A must be positive definite.
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Linear Algebra

QR Factorization

A matrix decomposition makes A;xn = QmxmFRmxn, Where
Q" Q = Imxm and R is an upper-triangular matrix.

@ QR factorization can be computed by Gram-Schmidt process
and Householder transformations.

o Note: A matrix Q is called orthogomal matrix if RTR=1

@ For a rectangular matrix:

N
Rnn

Aan—Qme mxn = Qm><n Q?nx(mn):||: 0

:| = @mxnﬁnxn

o A= QR’ is the reduced QR factorization
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Linear Algebra

Singular Value Decomposition (SVD)

A matrix decomposition makes Amxn = UnxmZmxn Vs
where UTU = lyxm and VTV = [,4p.

e U and V are the eigenvectors of AAT and AT A respectively.
@ For a rectangular matrix:
T ] 0 in><n ¥ & T
A=UXV = Um><n Umx(m—n)} |: 0 :| V = UanZanann

A= 0> VT is the reduced SVD.

SVD is the Latent Semantic Indexing (LSI) in Text Mining
when A is a term by document matrix
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Linear Algebra

Least Squares Problem

@ Given A€ R™*" and y € R™, a linear system with m > n:
Aw =y, (6)

is called an overdetermined linear system.

@ In general, an overdetermined linear system has no solution.
An approximated solution can be obtained by solving the
following minimization problem.

-
= = 7
ngﬂgnr r= mln |r||3 = m|n Z (7)

where r = y — Aw € R is the residual.

@ The minimization problem (7) is the formulation of least
squares problem.
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Linear Algebra

Example: Data Fitting

Suppose we want to fit the data

(X17y1)7 (X2,)/2), ceey (Xm7Ym)

with a straight line y = wy + wyx.
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Linear Algebra

Example: Data Fitting

This problem can be expressed as the following overdetermined
linear system:

yi = wo+wixg
Yo = wo+ wixo
Ym = WwWp+ WiXm,
or
1 x1 n
1 X2 WO )/2
5 [Wl] - |7 (8)
1 xn Ym
or
Aw =y
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Linear Algebra

A vector w minimizes the residual norm ||r||2 = |ly — Awl||2,
thereby solving the least squares problem if and only if
rLrange(A), that is,

Alr=0
or equivalently,
ATAw = ATy,
or equivalently,
Py = Aw,

where P = A(ATA)"AT is a orthogonal projection and w is
unique iff A is full rank (w = (ATA)"LATy).

col(A)
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Multi-variable Calculus
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Multi-variable Calculus

Gradient

Definition
Let f : R” — R be a differentiable function. The gradient of
function f at a point x € R” is defined as

0f (x) Of(x) Of (x)

VA= Ox1 = Oxo 7 Oxp

]eR"

@ The gradient vector Vf(x) gives the direction of fastest
increase of f.

@ Example

f(x1,x) = x12 +x22 —2x1 + 4xo
Vf(Xl,Xg) = [2X1 -2 2x0 + 4]
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Multi-variable Calculus

Hessian

If f:R"™ — R is a twice differentiable function. The Hessian
matrix of f at a point x € R” is defined as

O2f Pf . >f
Ox? Ox10x2 Ox10xn
Vi (x)=| : _ . | eR™"
8 f A )
OxnOx1  Oxn0x2 Ox?

@ Hessian matrix describes the local curvature of a function
o Example
f(Xl,Xz) = X12 JrX22 —2x1 + 4xp
20
2 _
Vef(x) = {0 2]
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Multi-variable Calculus

Connection to Maximum and Minimum Values

First-Order Necessary Conditions

If x* is a local minimizer and f is continuously differentiable in an
open neighborhood of x*, then Vf(x*) = 0.

| A\

Second-Order Necessary Conditions

If x* is a local minimizer and V2f exists and is continuous in an
open neighborhood of x*, then Vf(x*) = 0 and V?f(x*) is
positive semidefinite.

Second-Order Sufficient Conditions

Suppose that V2f is continuous in an open neighborhood of x*
and that V£(x*) =0, and V2f(x*) is positive definite. Then x* is
a strict local minimizer of f.
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Multi-variable Calculus

Revisit Least Squares Problem

e Given A€ R™" and y € R™, a linear system with m > n:
Aw =y, (9)

is called an overdetermined linear system.

@ Try to find an approximation solution with the “smallest

residual”
m
. 2 . 2 .
= — Aiw)? = f(w). 1
min_ ]2 Vggﬂgn'l(y, iw)” = min f(w) (10)
1=

o Let Vf(w) = 0 we can have the normal equation

20 /38



Probability and Statistics
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Probability and Statistics

Random Variable

Definition
A random variable is a real-valued function for which domain is a
sample space

@ Example
For a coin toss, the possible outcome is head or tail. The
number of heads appearing in one fair coin toss can be
described using the following random variable:

1, if head
X = { 0, if tail

with probability function given by:

5oifx=1
P(X =x) = %, ifx=0
0 sotherwise



Probability and Statistics

Probability Distribution

Definition

If X is discrete random variable, the function given by P(X = x)
for each x within the range of X is called probability distribution of
X.

@ Example
Let the random variable X be denoted as the total number of

heads. The probability distribution of heads obtained in the
four tosses of a fair coin can be written as follows:

4
P(X = x) = (24) for x = 0,1,2,3, 4.
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Probability and Statistics

Probability Density Distribution

Definition

A function with values f(x), defined over the set of all real
numbers, is called a probability density function of the continuous
random variable X if and only if

P(a< X <b)= /b f(x)dx,

for any real constants a and b with a < b

@ Example
The p.d.f of normal distribution is defined as follows:

1 1x—py2
F(x) = e 2(50)7,
( ) o2

where p is the mean and o is the standard deviation.
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Probability and Statistics

Conditional Probability

Definition
The conditional probability of an event A, given that an event B
has occurred, is equal to

P(AN B)

P(AIB) = ~ 553

o Example
Suppose that a fair die is tossed once. Find the probability of
a 1 (event A), given an odd number was obtained (event B).
P(ANB) 1/6 1
PAB)= ——~—"=-"-=<-
(A1B) P(B) 1/2 3
@ Restrict the sample space on the event B
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Probability and Statistics

Theorem

Assume that {Bj, Ba, ..., Bk} is a partition of S such that
P(B;) >0, for i =1,2,..., k. Then

k

P(A)=>_ P(A|B)P(B)).

i=1

o Note that {Bi, By, ..., Bk} is a partition of S if
Q S=BiUBU...UBy
Q@ BinBj=0fori#j
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Probability and Statistics

Bayes' Rule

Bayes' Rule

Assume that {Bj, B, ..., Bk} is a partition of S such that
P(B;) >0, for i =1,2,..., k. Then

P(A|B;)P(B))
- .
; P(A|B;)P(B;)

P(Bj|A) =
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Probability and Statistics

Expected Value

If X is a discrete random variable and P(X = x) is the value of its
probability distribution at x, the expected value of X is

p=EX)=> x P(X=x).

Correspondingly, if X is a continuous random variable and f(x) is
the value of its probability density at x, the expected value of X is

E(X) = /_ O;x- F(x)dx.

o E(aX + bY) = aE(X) + bE(Y), linear operator
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Probability and Statistics

Variance

Measures of how far a set of numbers are spread out

If X is a discrete random variable and P(X = x) is the value of its
probability distribution at x, the expected value of X is

Var(X) = E(IX — EX)P) = 3 (x = w)? - P(X = x).

X

Correspondingly, if X is a continuous random variable and f(x) is
the value of its probability density at x, the expected value of X is

Var(X) = /OO (x — p)? - F(x)dx.

— 00

o Var(X) = E(X?) — (E(X))?
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Probability and Inference

Bernoulli Distribution

A trial is performed whose outcome is either a “success” or a
“failure”. The random variable X is a 0/1 indicator variable and
takes the value 1 for a success outcome and is 0 otherwise. p is
the probability that the result of trail is a success. Then

P(X=1)=pand P(X=0)=1—p
which can equivalently be written as
P(X=0)=p(1-p) i=0,1

Tossing a fair coin, the parameter p = 0.5. If X is Bernoulli,
Q@ E(X)=np,
Q@ Var(X) = p(1-p)
© Who knows p?
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Probability and Inference

Probability and Inference

@ The outcome of tossing a coin is { Heads, Tails}
@ We use a random variable X € {0, 1} to indicate the outcome
o Suppose that we have a random sample: X = {x*}V

@ How to estimate the parameter p?
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Probability and Inference

Maximum Likelihood Estimation

Likelihood Function

The probability to observe the random sample X = {x*}_, is

[Ira-p*

t=1

Why don't we choose the parameter p which will maximize the
probability for observing the random sample X = {xt}_,?

Based on MLE, we will choose the parameter p

N
_ D X'

P N
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Probability and Inference

Sample Mean, Variance, and Standard deviation

Sample Mean

The mean of a sample of n measured responses y1, ya, ..., ¥, is
given by

The corresponding population mean is denoted by p.

Sample Variance

The variance of a sample of measurements y1, y», ..., yn is given by

1 n
2 § . —\2
i=

The corresponding population variance is denoted by o2.
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Probability and Inference

Applying Baye's Rule to Classification

Credit Cards Scoring: Low-risk vs. High-risk

@ According to the past transactions, some customers are
low-risk in that they paid back their loan and the bank
profited from them and other customers are high-risk in that
they defaulted.

@ We would like to learn the class “high-risk customer”

@ We observe customer’s yearly income and savings, which we
represent by two random variables X; and Xo

@ The credibility of a customer is denoted by a Bernoulli
random variable C where C = 1 indicates a high-risk
customer and C = 0 indicated a low-risk customer
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Probability and Inference

Applying Baye's Rule to Classification

How to make the decision when a new application arrives?

@ When a new application arrives with X; = x; and X5 = x»

o If we know the probability of C conditioned on the
observation X = [x1, xz] our decision will be

o C=1if P(C=1|[x1, x]) >05
o C = 0 otherwise

@ The probability of error we made based on this rule is
1 —max{P(C = 1|[x1, x2]), P(C =0|[x1, x2])} < 0.5

@ Please note P(C = 1|[x1, x2]) + P(C =0|[x1, x2]) =1
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Probability and Inference

The Posterior Probability:P(C|x) = %

e P(C =1) is called the prior probability that C =1

@ In our example, it corresponds to a probability that a
customer is high-risk, regardless of the x value.

@ It is called the prior probability because it is the knowledge we
have before looking at the observation x

e P(x|C) is called the class likelihood and is the conditional
probability that an has the
associated observation value x

@ P(x), the evidence is the probability that an observation x to
be seen, regardless of whether it is a positive or negative
example

All above information can be extracted from the past transactions
(historical data)
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Probability and Inference

The Posterior Probability:P(C|x) = %

@ Because of normalization by the evidence, the posteriors sum
uptol

@ In our example, P(X1, X2) is called the joined probability of
two random variables X7 and X5

@ Under the assumption, these two random variables X; and X;
are probability independent, we have
P(X1, X2) = P(X1)P(X2)

@ It is one of key assumptions of Naive Bayes’ Classifier

@ Although it is over simplified the problem it is very easy to
use for real applications
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Probability and Inference

Extend to Multi-class classification

We have K mutually and exhaustive classes;
G,i=12...K

For example, in optical digit recognition, the input is a bitmap
image and there are 10 classes

We can think of that these K classes define a partition of the
input space

Please refer to the slides of the Partition Theorem and Baye's
Rule

The Bayes' classifier choose the class with the highest
posterior probability; that is we choose C; if

P(Ci|x) = max P(Ck|x)

Question: Is it very important to have P(x), the evidence?
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