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Introduction

Two Dimension Reduction Methods

Principal Component Analysis (PCA)

The most popular dimension reduction method

Based on the covariance matrix of input attributes

Unsupervised method

Sliced Inverse Regression (SIR)

SIR has won its reputation to perform well in dimension
reduction and related applications

Based on the conditional covariance matrix of input attributes
on the responses

Supervised method
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Introduction

PCA and SIR Directions for Ionosphere Dataset
(p = 35)
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Sliced Inverse Regression

Two Assumptions

Let A = [x1
′; · · · ; xn

′] ∈ Rn×p be the data matrix of input
attributes and Y = [y1; · · · ; yn] ∈ Rn be the corresponding
responses.

There Exists an e.d.r. Subspace

Y = f (β′1x, . . . , β
′
dx; ε), (1)

where βj , x ∈ Rp, d (often � p) is the effective dimensionality and
{β1, . . . , βd} forms a basis of this effective dimension reduction
(e.d.r.) subspace. Note f is unknown and can be nonlinear or
linear form.

Linear Design Condition

For any b in Rp, the conditional E (b′x|β′1x, . . . , β′dx) is linear in
β′1x, . . . , β

′
dx; that is, for some constants c0, c1, . . . , cd ,

E (b′x|β′1x, . . . , β′dx) = c0 + c1β
′
1x + . . . + cdβ′dx.
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Sliced Inverse Regression

Main Theorem (Li, 1991)

Theorem

Under condition (1) and L.D.C., the centered inverse regression
curve E (x|y)− E (x) is contained in the linear subspace spanned by
Σxβi , i = 1, . . . , d, where Σx is the covariance matrix of x.

SIR is based on L.D.C. and (1)

The theorem shows the inverse regression E (x|y)− E (x)
indeed lies in a d-dimensional subspace which can be related
to the e.d.r. subspace under these two conditions

SIR estimate E (x|y) by a step function consisting of Ah ⊆ A
(ie., slice the data into several slices and estimate E (x|y) by
the slice means)
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Sliced Inverse Regression

The Formulation of SIR

From the theorem, SIR finds the e.d.r. directions by solving the
following generalized eigenvalue problem:

ΣE(A|YJ)β = λΣAβ, (2)

where ΣA is the sample covariance matrix of A, YJ denotes the
membership of slices and there are J many slices, and ΣE(A|YJ)

denotes the between-slice sample covariance matrix based on sliced
means given by

ΣE(A|YJ) =
1

n

J∑
j=1

nj(x̄
j − x̄)(x̄ j − x̄)′.

Here x̄ is the sample grand mean, x̄ j = 1
nj

∑
i∈Sj

x i is the sample

mean for the jth slice and Sj is the index set for jth slice.
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Sliced Inverse Regression

Intuition Behind SIR

There is an intuitive way to describe SIR:

max
β∈Rp

β′ΣE(A|YJ)β subject to β′ΣAβ = 1. (3)

Repeatedly solving (3) with the orthogonality constraints
βkΣAβl = δk,l , where δk,l is the Kronecker delta, the sequence of
solutions form the basis of e. d .r. subspace.
Note that the slices are extracted from A according to the sorted
responses Y . For classification, x̄ j is simply the sample mean of
input attributes for the jth class.
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Sliced Inverse Regression

The classical SIR is designed to find a linear transformation
from the input space to a low dimensional e.d.r. subspace

SIR does not work for nonlinear feature extraction and it fails
to find linear directions being in the null space or having small
angles to the null space of ΣE(x|y)

A remedy to this problem is the kernel extension for SIR

We go back to the Support Vector Machine and see the
“kernel trick”
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Smooth Support Vector Machine

Binary Classification Problem

Given a training dataset

S = {(xi , yi )|xi ∈ Rp, yi ∈ {−1, 1}, i = 1, . . . , n}

xi ∈ A+ ⇔ yi = 1 & xi ∈ A− ⇔ yi = −1

Main Goal:

Predict the unseen class label for new data

Find a function f : Rn → R by learning from data

f (x) ≥ 0 ⇒ x ∈ A+ and f (x) < 0 ⇒ x ∈ A−

The simplest function is linear:f (x) = w ′x + b

11 / 45



Nonlinear Dimension Reduction with Kernel Sliced Inverse Regression

Smooth Support Vector Machine

Maximum Margin Discriminant Hyperplane

A+

A-

x0w = b + 1

x0w = b à 1

w

||w||2
2 = margin

(a) separable

x0w = b + 1

x0w = b à 1
||w||2
2 = margin

A+

A-

øi

øj

(b) non-separable
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Smooth Support Vector Machine

Support Vector Machine Formulations

Summary of Notation

Let A = [x1
′; · · · ; xn

′] ∈ <n×p be the data matrix of input
attributes and Y = [y1; · · · ; yn] ∈ {−1 or 1}n be the corresponding
responses as in SIR. For convenient, we also define

D =

 y1 . . . 0
...

. . .
...

0 . . . yn

 ∈ <n×n

Aiw + b ≥ +1, for Dii = +1,
Aiw + b ≤ −1, for Dii = −1,

equivalent to

D (Aw + 1b) ≥ 1, where 1 = [1, 1, . . . , 1]′ ∈ <n.
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Smooth Support Vector Machine

Support Vector Machine Formulations

Two Different SVM Formulations

2-Norm Soft Margin (Primal form):

min
(w,b,ξ)∈Rp+1+n

1
2‖w‖

2
2 + C

2 ‖ξ‖
2
2

D (Aw + 1b) + ξ ≥ 1

1-Norm Soft Margin (Primal form):

min
(w,b,ξ)∈Rp+1+n

1
2‖w‖

2
2 + C1′ξ

D (Aw + 1b) + ξ ≥ 1, ξ ≥ 0

Margin is maximized by minimizing reciprocal of margin.
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Smooth Support Vector Machine

Smooth Support Vector Machine

SVM as an Unconstrained Minimization Problem

min
w ,b

C
2 ‖ξ‖

2
2 + 1

2

(
‖w‖2

2 + b2
)

s.t. D (Aw + 1b) + ξ ≥ 1
(QP)

At the solution of (QP) : ξ = (1− D(Aw + 1b))+ where
(·)+ = max {·, 0}.

Hence (QP) is equivalent to the nonsmooth SVM:

min
w ,b

C

2
‖(1− D(Aw + 1b))+‖2

2 +
1

2
(‖w‖2

2 + b2)

Change (QP) into an unconstrained MP

Reduce (p + 1 + n) variables to (p + 1) variables
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Smooth Support Vector Machine

Smooth Support Vector Machine

SSVM: Smooth Support Vector Machine

Replacing the plus function (·)+ in the nonsmooth SVM by
the smooth p(·, β), gives our SSVM:

min
(w ,b)∈Rp+1

C

2
‖p((1− D(Aw + 1b)), β)‖2

2 +
1

2
(‖w‖2

2 + b2),

where p(x , β) := x + 1
β log(1 + e−βx).

The solution of SSVM converges to the solution of
nonsmooth SVM as β goes to infinity.

It can be solved by Newton-Armijo Method and the
complexity depends on dimension of input space (columns)
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Smooth Support Vector Machine

Nonlinear SSVM

The Illustration of Nonlinear SVM
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Smooth Support Vector Machine

Nonlinear SSVM

Nonlinear SVM Motivation

Linear SVM: (Linear separator: x′w + b = 0 )

min
ξ≥0,w ,b

C
2 ‖ξ‖

2
2 + 1

2(‖w‖2
2 + b2)

s.t. D(Aw + 1b) + ξ > 1
(QP)

By QP “duality”, w = A′Dα Maximizing the margin in the
“dual space” gives:

min
ξ≥0,α,b

C
2 ‖ξ‖

2
2 + 1

2(‖α‖2
2 + b2)

s.t. D(AA′Dα + 1b) + ξ > 1

Dual SSVM with separator: x′A′Dα + b = 0

min
α,b

C

2
‖p(1− D(AA′Dα + 1b), β)‖2

2 +
1

2
(‖α‖2

2 + b2)
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Smooth Support Vector Machine

Nonlinear SSVM

Kernel Trick

We can use the value of kernel function to represent the inner
product of two training points in feature space as follows:

K (x, z) =< φ(x), φ(z) > .

The most popular kernel function is the Gaussian kernel

K (x, z) = e−γ||x−z||22 .

The kernel matrix K (A,A′)n×n represents the inner product of
all points in the feature space where K (A,A′)ij = K (xi , xj).
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Smooth Support Vector Machine

Nonlinear SSVM

Nonlinear SSVM Formulation

Replace AA′ by a nonlinear kernel K (A,A′) without defining a
explicit feature map φ:

min
α,b

C

2
‖p(1− D(K (A,A′)α + 1b), β)‖2

2 +
1

2
(‖α‖2

2 + b2)

Use Newton-Armijo algorithm to solve the problem

Each iteration solves n + 1 linear equations in n + 1 variables

Nonlinear classifier depends on the data points with nonzero
coefficients :

K (x′,A′)α + b =
∑
αj 6=0

αjK (Aj , x) + b
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Smooth Support Vector Machine

Nonlinear SSVM

Reduced Kernel SSVM Formulation

In the process of replacing the full kernel matrix by a reduced
kernel, we use the Nyström approximation for the full kernel
matrix:

K (A,A′) ≈ K (A, Ã′)K (Ã, Ã′)−1K (Ã,A′), (4)

where K (A,A′) = Kn×n , Ãñ×p is a subset of A and
K (A, Ã) = K̃n×ñ is a reduced kernel.

For a vector α ∈ <n and α̃ ∈ <ñ, we have

K (A,A′)α ≈ K (A, Ã′)K (Ã, Ã′)−1K (Ã′,A)α = K (A, Ã′)α̃.

α̃ is an approximated solution of α via the reduced kernel
technique.
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Smooth Support Vector Machine

Nonlinear SSVM

Nonlinear SVM vs. RSVM

Nonlinear SVM RSVM

min
α,b,ξ>0

C
m∑

j=1
ξj + 1

2

∥∥α∥∥2

2
min

α̃,b,ξ>0
C

m∑
j=1

ξj + 1
2

∥∥α̃∥∥2

2

D(K (A,A′)α + 1b) + ξ > 1 D(K (A, Ã′)α̃ + 1b) + ξ > 1

Nonlinear SVM vs. RSVM
vs.

D(K(A,AöT)uö + eb) + ø>e

RSVM
min
u,b,ø>0

C
P
j=1

m

øj + 2
1
ííuíí2

2

D(K(A,AT)ë+ eb) + ø>e

Nonlinear SVM
min
ë,b,ø>0

C
P
j=1

m

øj + 2
1
ííëíí2

2

K(A,AT) ∈ Rmâm K(A,AöT) ∈ Rmâmö

K(A,A0) : K(A,Aà0) :

K(A,AT)ij = k(xi, xj) K(A,Aö
T
)ij = k(xi, xöj)where and

22 / 45



Nonlinear Dimension Reduction with Kernel Sliced Inverse Regression

Kernel Extension for SIR

Kernel Trick on SIR

Applying Kernel/Reduced Kernel Tricks on SIR

Similar to applying the kernel trick on SSVM, we can extend
SIR to Kernel SIR (KSIR)

In the feature space, KSIR works with kernel data K (A,A′) as
nonlinear SSVM

The LDC in the finite basis approximation can be stated as:

E (a′K |α′1K , . . . , α′dK ) = c0 +c1α
′
1K + · · ·+cdα′dK , ∀a ∈ Rn

(5)
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Kernel Extension for SIR

Kernel Trick on SIR

Main Theorem in KSIR

Theorem

Assume the existence of an e.d.r. subspace
H = span{K (x,A)α1, . . . ,K (x,A)αd} and the LDC (5). Then the
central inverse regression vector falls into the subspace spanned by
{ΣKα1, . . . ,ΣTαd}, i.e.,

E (K |y)− E (K ) ∈ span{ΣKα1, . . . ,ΣKαd}, (6)

where ΣK is the covariance matrix of T = K (x,A)′.

Note that we estimate E (K |y) by the slice means of kernel
data
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Kernel Extension for SIR

KSIR Formulation

Kernel Sliced Inverse Regression

From the theorem above, the kernel sliced inverse regression
finds the dimension reduction directions in feature space by
solving the following generalized eigenvalue problem:

ΣE(K |y)α = λΣKα (7)

where K = K (A,A) ∈ Rn×n

We implement KSIR in a different way for numerical stability
and fast computation

25 / 45



Nonlinear Dimension Reduction with Kernel Sliced Inverse Regression

Kernel Extension for SIR

KSIR Implementation

Finding the Orthonormal Basis for e.d.r Subspace

Define centered slice means of kernel data W = [w1 · · ·wJ ]
and the jth column is given by

wj =
√

nj/n

(
1′nj

K (ASj
,A)

nj
− 1′nK (A,A)

n

)′

,

where 1′nj
K (ASj

,A)/nj and 1′nK (A,A)/n are respectively the
jth slice sample mean and the grand mean of K (A,A)

W ′W = ΣE(K |YJ) is the between-slice sample covariance

Proposition

The orthonormalized e.d.r. directions are given by columns of
Σ−1

K WUD−1/2, where U is computed form a small eigenvalue
decomposition W ′Σ−1

K W = UDU ′.
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Kernel Extension for SIR

KSIR Implementation

Finding the Orthonormal Basis for e.d.r Subspace

We have C(Σ−1
K W ) is in the e.d.r. subspace from the theorem

SVD is applied to the matrix Σ
−1/2
K W as the normalization is

in terms of V ′ΣKV = I ,

Only right singular vectors are needed and it can be solved
from the following small eigenvalue decomposition:

(Σ
−1/2
K W )′(Σ

−1/2
K W ) = W ′Σ−1

K W = UDU ′

Let V = Σ−1
K WUD−1/2. Its columns are still in the column

space C(Σ−1
K W ) and hence are still in the e.d.r. subspace

V is satisfying the orthonormality:

V ′ΣKV = (D−1/2U ′W ′Σ−1
K )ΣK (Σ−1

K WUD−1/2)

= D−1/2U ′UDU ′UD−1/2 = I
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Kernel Extension for SIR

Approximation to KSIR

Motivation for Approximated KSIR

In many real world applications, the effective rank of the
covariance matrix of kernel data is very low

The sample covariance matrix ΣK is usually singular and
causes numerical instability and poor e.d.r. directions
estimation

Adding a ridge-type regularization term is a common way to
solve the numerical instability but acts like appending
unnecessary and nuisance coordinate axes to the effective and
useful axes

An appropriate way to deal with the problem is to find a
reduced-column approximation to K , denoted by K̃ which
provides a good approximation to C(K )
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Kernel Extension for SIR

Approximation to KSIR

Approximation of KSIR

Let P̃ be a projection matrix of size n × ñ, which satisfies
P̃ ′P̃ = Iñ

Given a reduced-column kernel data K̃ := KP̃, the
approximation of KSIR is to solve the following reduced
generalized eigenvalue problem:

ΣE(K̃ |YJ)
α̃ = λΣK̃ α̃, (8)

which is of much smaller size, as ñ � n

We can also apply Proposition to the reduced problem (8) and
the resulting e.d.r. directions are given by
Ṽ = Σ−1

K̃
W̃ ŨD̃−1/2, where Ũ and D̃ are the eigenvectors and

eigenvalues for W̃ ′Σ−1
K̃

W̃
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Kernel Extension for SIR

Approximation to KSIR

KSIR Algorithm

KSIR Algorithm

Input: reduced kernel matrix K̃ an n × ñ matrix and YJ an n-vector.

Output: KSIR directions Vñ×(J−1) and associated eigenvalues d(J−1)×1.

1. Compute the centered and weighted slice means W̃ñ×J ;

// J is the number of slices //

2. Compute the covariance matrix ΣK̃ of the reduced kernel;

3. Compute the eigenvalue decomposition of W̃ ′Σ−1

K̃
W̃ as ŨD̃Ũ ′;

// O(J3) for solving the eigenvalue problem //

// D̃ and Ũ consist of non-zero eigenvalues and associated eigenvectors //

// O(ñ3) for solving the linear system ΣK̃X = W̃ to get Σ−1

K̃
W̃ //

4. V ← Σ−1

K̃
W̃ ŨD̃− 1

2 ; d ← diagonal{D̃}.
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Kernel Extension for SIR

Approximation to KSIR

Reduced Kernel Approximation by Optimal Basis

The SVD gives the optimal low-rank projection to get a
reduced kernel

P can be obtained from the SVD of Cov(K ):

Cov(K ) := ΣK = PSP ′ ≈ P̃S̃P̃ ′.

Also note that

Cov(K̃ ) := ΣK̃ =
1

n
P̃ ′K

(
In −

1n1
′
n

n

)
KP̃ = P̃ ′ΣK P̃ = S̃ ,

which makes the inverse of ΣK̃ readily there

This strategy only works for small to median sized kernel
matrix and the complexity is O(n3)
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Kernel Extension for SIR

Approximation to KSIR

Reduced Kernel Approximation by Random Basis

In the random subset approach we choose P̃ as a column
subset from In

It is the same idea with the reduced kernel SSVM and we have

K (A,A)α ≈ K̃K (Ã, Ã)−1K̃ ′α = K̃ α̃,

where α̃ = K (Ã, Ã)−1K̃ ′α is an approximation to the full
problem

The resulting reduced kernel matrix K̃ has full column rank so
that ΣK̃ is well-conditioned and the complexity is O(ñ3)

The singularity problem can be resolved and the
computational cost can be cut down at the same time
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Numerical Experiments

Experimental Setting

We evaluate the effectiveness of KSIR on 5 binary
classification datasets, 8 multi-class classification datasets and
6 regression datasets

The R.S. column represents the ratio of the reduced set used
in our experiments when applying reduced kernel technique

Apply the hybrid of KSIR and linear learning algorithms on
classification (FDA and SSVM) and regression problems (RLS)

Compared our results with LIBSVM

The Gaussian kernel K (x , u) = exp(−γ‖x − u‖2) is used
except for the medline data set
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Numerical Experiments

Classification Datasets

Description of Classification Datasets Used in Our Experiments

Data set Classes Training Size Testing Size Attributes R.S. (%)

banana 2 400 4900 2 10%

tree 2 700 11692 18 10%

splice 2 1000 2175 60 10%

adult 2 32561 16281 123 1%

web 2 49749 14951 300 1%

Iris 3 150 - 4 10%

wine 3 178 - 13 10%

vehicle 4 846 - 18 20%

segment 7 2310 - 19 10%

dna 3 2000 1186 180 10%

satimage 6 4435 2000 36 20%

pendigits 10 7494 3498 16 4%

medline 5 1250 1250 22095 100%
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Numerical Experiments

Regression Datasets

Description of Regression Datasets Used in Our Experiments

Data set Size Attributes R.S. (%)

housing 506 13 15%
Comp Activ 1000 1000 21 5%
Kin fh 1000 1000 32 5%
Comp Activ 8129 21 5%
Kin fh 8129 32 5%
Friedman 40768 10 1%

35 / 45



Nonlinear Dimension Reduction with Kernel Sliced Inverse Regression

Numerical Experiments

Data Visualization

Peaks Dataset
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Figure 2: 2D views of response vs. the 1st variate by PCA, SIR and KSIR with peaks data.

surface. The first SIR direction does reflect a good description for the response, and the

first KSIR direction is even better and it carries the best information content for the

response among the three methods. Figure 3(c) shows a clearly good linearity of the

first KSIR variate to the response. In summary, the effect of KSIR is not mere dimen-

sion reduction, it also maps the data to low-dimensional nonlinear features via kernel

transform so that the response can be well approximated by a linear form in terms of

these extracted features.

20

Figure: 2D views of response vs. the 1st variate by PCA, SIR and KSIR
with peaks data. 36 / 45
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Numerical Experiments

Data Visualization

Friedman Dataset

?X1 · · · X10 ∈ [0 1] and Y = 10 sin(πX1X2) + 20(X3 − 0.5)2 + 10x4 + 5x5 + σ(0, 1)
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Figure 3: 2D views of Friedman data by PCA, SIR and KSIR.

4.2 KSIR dimension reduction for classification

The dimension reduction provided by KSIR can be used as a data preprocess for later

task such as classification or regression. In the process of applying SIR or KSIR, the role

of each slice represents the clustering structure of the data. If we know the information

about clustering structure in advance, it helps us to make slices when applying SIR

or KSIR. In classification, the clustering structure has been defined through their class

labels, and slices are made accordingly. We then estimate the central e.d.r. subspace

and map the data onto this subspace for discriminant purpose. In a J-class problem,

we slice the data sets into J slices according to the class labels. Thus, there are at most

J − 1 many independent e.d.r. directions, since the rank of ΣE(A|YJ ) or ΣE(K|YJ ) is at

most J − 1. After extracting the e.d.r. subspace, discriminant analysis becomes much

computationally easier in this very low-dimensional subspace. Since we have turned the

nonlinear structure in the pattern space into an approximately linear structure in the

feature space via kernel transformation, direct application of linear learning algorithms

on KSIR variates is often sufficient. In our classification experiments, we particularly

pick the Fisher linear discriminant analysis (FDA) and the linear smooth support vector

machine (SSVM) (Lee & Mangasarian, 2001) as our baseline learning algorithms. One

property of SSVM is that it is solved in the primal space and its computational com-

plexity depends on the number of input attributes (here the number of KSIR variates).

Smaller number of columns implies less computational load. Note that as data are

21

Figure: 2D views of Friedman data by PCA, SIR and KSIR.
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Figure 1: 2D views of pendigits data by PCA, SIR and KSIR.

tory variables, but only five of them are effective and the rest are nuisance. There are

linear component, 10x4 +5x5, as well as nonlinear component, sin(πx1x2), and a hidden

e.d.r. direction x3 to SIR in this example. We split the data into 99% and 1% subsets

for training and testing, respectively, for data visualization purpose. The leading ten

eigenvalues by SIR and KSIR are respectively

SIR : 0.7213, 0.0067, 0.0020, 0.0013, 0.0011, 0.0007, 0.0004, 0.0004, 0.0003, 0.0001;

KSIR : 0.9417, 0.6639, 0.2010, 0.0435, 0.0214, 0.0120, 0.0111, 0.0105, 0.0097, 0.0092.

The low-dimensional data views by PCA, SIR and KSIR are shown in Figure 3. Ob-

viously, none of the PCA directions capture a good effective subspace for the response

19

Figure: 2D views of pendigits data by PCA, SIR and KSIR.
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Numerical Experiments

KSIR Dimension Reduction for Classification

Error Rates of Classification Datasets

Table: The average error rate for FDA and linear SSMV on KSIR variates
compared with nonlinear LIBSVM on classification data sets.

Data set KSIR+FDA KSIR+SSVM LIBSVM

banana 0.1170 0.1214 0.1228
tree 0.1234 0.1179 0.1283
splice 0.1292 0.1200 0.1012
adult 0.1671 0.1488 0.1491
web 0.0169 0.0149 0.0090

Iris 0.0213 0.0227 0.0380
wine 0.0131 0.0094 0.0181
vehicle 0.1468 0.1483 0.1429
segment 0.0309 0.0288 0.0283

dna 0.0659 0.0453 0.0460
satimage 0.0914 0.0904 0.0872
pendigits 0.0224 0.0188 0.0177
medline 0.1208 0.1136 0.1106
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Numerical Experiments

KSIR Dimension Reduction for Classification

Training Time of Classification Datasets

Table: The training time (seconds) of FDA and linear SSVM on KSIR

variates compared with nonlinear LIBSVM on classification data sets.

Data set KSIR+FDA KSIR+SSVM LIBSVM

banana 0.063 0.078 0.016
tree 0.141 0.078 0.078
splice 0.109 0.109 0.422
adult 6.032 6.110 255.631
web 37.374 37.406 174.190

dna 0.329 0.344 2.900
satimage 3.828 3.953 4.593
pendigits 1.390 2.058 2.953
medline 1.993 2.016 3.033

40 / 45



Nonlinear Dimension Reduction with Kernel Sliced Inverse Regression

Numerical Experiments

KSIR Dimension Reduction for Regression

R2 of Regression Datasets

Table: R2 of RLS on 3 and 29 KSIR variates compared with R2 of

nonlinear LIBSVM on regression data sets.

Data set KSIR(3)+RLS KSIR(29)+RLS LIBSVM

housing 0.8543 0.8462 0.8687
Comp Activ 1000 0.9685 0.9732 0.9776
Kin fh 1000 0.6452 0.6482 0.6491
Comp Activ 0.9760 0.9789 0.9820
Kin fh 0.6964 0.6975 0.7014
Friedman 0.9556 0.9556 0.9559

R2 = 1− ‖y−ŷ‖2

‖y−ȳ‖2

We fix at 30 slices in all our regression examples
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KSIR Dimension Reduction for Regression

Training Time of Regression Datasets

Table: The training time (seconds) of RLS on 3 and 29 KSIR variates
compared with the training time of nonlinear LIBSVM on regression data
sets.

Data set KSIR(3)+RLS KSIR(29)+RLS LIBSVM

housing 0.022 0.040 0.211
Comp Activ 1000 0.023 0.056 0.505
Kin fh 1000 0.022 0.041 0.395
Comp Activ 1.423 1.508 27.606
Kin fh 1.416 1.502 20.950
Friedman 8.452 8.745 2400.1
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KSIR Dimension Reduction for Regression

Effect on the Number of Slices

Figure: The variation of correlation coefficient on each slice number
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Conclusion

Conclusion

The KSIR algorithm first maps the pattern data to an
appropriate feature space, and next extracts the main linear
features in this embedded feature space

After the extraction of the e.d.r. subspace, many supervised
linear learning algorithms, such as FDA, SVM, and SVR, can
be applied to the images of input data in this e.d.r. feature
subspace

In KSIR-based approach, it only involves solving the KSIR
problem once and a series of CJ

2 many linear binary SVMs in a
(J − 1)-dimensional space

We have also incorporated reduced kernel approximation to
cut down the computational load and to resolve the numerical
instability
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Conclusion

Parameter Tuning

Parameter Tuning

The naive tuning procedure, a two-dimensional grid search, in
conventional SVMs is time consuming

Tuning procedure for KSIR-based methods is nearly a
one-dimensional search for γ

KSIR-based methods are carried out in two stages

At the first stage, a parameter value for γ is needed for
training KSIR e.d.r. subspace
At the second, a parameter value for C is needed for linear
SSVM or RLS on KSIR variates

This tuning procedure at the second stage for C is
computationally light, as it is carried out in a very
low-dimensional e.d.r. subspace

For each fixed γ we can try a few C values to pair with this γ
without much computing cost
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