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Binary Classification Problem
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Binary Classification Problem
(A Fundamental Problem in Data Mining)

Find a decision function (classifier) to discriminate two
categories data sets.

Supervised learning in Machine Learning

e Decision Tree, Neural Network, k-NN and Support Vector
Machines, etc.

@ Discrimination Analysis in Statistics
e Fisher Linear Discriminator
@ Successful applications:
e Marketing, Bioinformatics, Fraud detection



Binary Classification Problem

Given a training dataset
S={(x'y)lx eR"yr e {-L1},i=1,....6}

xXeALoy=1&xcA oy =-1
Main Goal:

’Predict the unseen class label for new data

Find a function f : R” — R by learning from data
f(x)>0=x€Ayand f(x) <0=x€ A_

The simplest function is linear: f(x) = w'x+ b
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Binary Classification Problem

Linearly Separable Case
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Perceptron Algorithm (Primal Form)
Rosenblatt, 1956

@ An on-line and mistake-driven procedure Repeat:
fori=1to/
if yi((wk - x7) + by) <0 then
Wk xk 4 pyixi

b b R? R = i
k+1 < DOk + nyi lrg?gg [[x"]]

k— k+1
end if
until no mistakes made within the for loop return: k, (w*, by).
What is k 7



(Wt XT) + biit) > yi((we - X)) + by ?

Wk+1

—— wK 4+ nyx" and by «—— bk + nyiR?

Yi((w X 4 b)) = yi({(wh +'77YiXi) x') + by + 7_7)/:"‘_\"2)
= yi((w* 'X"> + by) + yi(ﬁ){i(({' -x') + R?))
= yi({w" - X') + b) +n((x" - X'y + R?)

R = max |x'||
1<i<t




Perceptron Algorithm Stop in Finite Steps

Theorem(Novikoff)
Let S be a non-trivial training set, and let

R = max ||x'||
1<i<t

Suppose that there exists a vector wep; such that ||wept| = 1 and
yi({Wopt - xi> + bopt) for 1 < i < £.

Then the number of mistakes made by the on-line perceptron
algorithm on S is almost (%)2.
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Perceptron Algorithm (Dual Form)

l

Given a linearly separable training set S and a =0, o € R,
b=0, R= max |xi.
1<i<e

Repeat: fori=1to/

K . .
if yi(>2)aiyi(x) - x") + b) <0 then
j=1
aj —a;i+1; b« b+ yR?
end if

end for
Until no mistakes made within the for loop return: («, b)



What We Got in the DualForm PerceptronAlgorithm?

‘
@ The number of updates equals: Y «a; = ||afj; < (?)2

=

@ «; > 0 implies that the training point (x;, y;) has been
misclassified in the training process at least once.

@ «; = 0 implies that removing the training point (x;, y;) will
not affect the final results.

@ The training data only appear in the algorithm through the
entries of the Gram matrix,G € R‘ which is defined below:

Gij = <Xi>XJ'>
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Support Vector Machine
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Binary Classification Problem

Linearly Separable Case
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Support Vector Machines
Maximizing the Margin between Bounding Planes
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Why Use Support Vector Machines?
Powerful tools for Data Mining

@ SVM classifier is an optimally defined surface
@ SVMs have a good geometric interpretation
@ SVMs can be generated very efficiently

@ Can be extended from linear to nonlinear case

e Typically nonlinear in the input space
e Linear in a higher dimensional "feature space”
o Implicitly defined by a kernel function

@ Have a sound theoretical foundation
o Based on Statistical Learning Theory
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Why We Maximize the Margin?
(Based on Statistical Learning Theory)

@ The Structural Risk Minimization (SRM):

o The expected risk will be less than or equal to empirical risk
(training error)+ VC (error) bound

o ||wlj2 «x VC bound
e min VC bound< min 1||wl|3 < max Margin
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Summary the Notations

Let S = {(x}y1),(x%,¥2),...,(x% y¢) be a training dataset and
represented by matrices

1\T
(Xz)T vi - 0
(x%) ¢ exe
= _ eER™ D= |: . | eR™
(Xé)T D/

A,'W + b > —I—]., for D,',' =+1
Aiw + b < —1, for D;j = —1 , equivalent to D(Aw +1b) > 1,
where 1 =[1,1,...,1]T e Rf
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Support Vector Classification
(Linearly Separable Case, Primal)

The hyperplane (w, b) is determined by solving the minimization
problem:
2
min sl
D(Aw +1b) > 1,
It realizes the maximal margin hyperplane with geometric margin

1

¥=
w2
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Support Vector Classification
(Linearly Separable Case, Dual Form)

The dual problem of previous MP:

1
max 1'a— -—a' DAAT Da
acR¢ 2

subject to
1"Da=0,a>0

Applying the KKT optimality conditions, we have AT Da. But
where is b 7
Don't forget

0<alDAw+1bh)—-1>0
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Dual Representation of SVM

;
(Key of Kernel Methods: w = ATDa* = Y yafAl)
i=1

The hypothesis is determined by (a*, b*)

h(x) = sgn((x ATDa*) + b*)
= sgnZy, (x"-x) + b*)

= sgn Zy, (x"-x) + b*)
af>0

Remember : AI-T = X
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Soft Margin SVM
(Nonseparable Case)

o If data are not linearly separable

e Primal problem is infeasible
e Dual problem is unbounded above

@ Introduce the slack variable for each training point
yilw'x' +b)>1-¢, &=>0, Vi
@ The inequality system is always feasible e.g.

w=0, b=0, £¢=1
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Robust Linear Programming
Preliminary Approach to SVM

min5 17¢
st. D(Aw+1b)+&>1 (LP)
§>0

where £ is nonnegative slack(error) vector

@ The term le, 1-norm measure of error vector, is called the
training error

@ For the linearly separable case, at solution of(LP): £ =0
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Support Vector Machine Formulations
(Two Different Measures of Training Error)

2-Norm Soft Margin:

. 1 9 C )
min “Mwl? + =
(w,b,&)eRn+1+£ 2” H2 2 ”5”2

D(Aw +1b) + € > 1

1-Norm Soft Margin (Conventional SVM)

. 1 , .
(Wvbyfr?el]?vﬂw §”WH2 +C1'¢
D(Aw +1b) +£ > 1

§>0
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Tuning Procedure
How to determine C 7

error

tréi ning cycles
C

_ - overfitting

The final value of parameter is one with the maximum testing set
correctness!
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Lagrangian Dual Problem

maxmin L(x,a, )

a,8 xeQ
subject to a>0
|}
max  6(«, )
a76

subject to a>0

whered(a, 3) :;22 L(x,a, )
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1-Norm Soft Margin SVM
Dual Formalation

The Lagrangian for 1-norm soft margin:

1
L(w,b,& a,y) = 5WTw+ C1T¢+

o[l = D(Aw +1b) — €] —~ ¢

where a >0 & ~v > 0.
The partial derivatives with respect to primal variables equal zeros:

OLw.b.&0) _ . ATpy —0
ow ’
3£(W,b,f,0¢)_1TDa: M:C]fafry:o,

23
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Substitute: w = A'Da, C17¢€ = (o + V)Tﬁ'
1"Da = 0, in L(W, b, 57 a, 7)

L(w,b, & a,y) = %WTW-F Cl1'¢+
a'[1— D(Aw +1b) — €] —~T¢

wherea >0 & v>0

1
6(a,7) = SaTDAATDa+1Ta —al DA(ATDa)
= —% TDAATDa + 1T«

s.t. lTDazo,a—’y:ClandQZO&'yZO
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Dual Maximization Problem
for 1-Norm Soft Margin

Dual:
max 1Ta — %aTDAATDa
a€cR?
1"Da=0
0<a<(Cl

@ The corresponding KKT complementarity

0<al D(Aw+1b)+£&(-12>0
0<¢Lla—-C1<0
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Slack Variables for 1-Norm

Soft Margin SVM f(x) = > yiai(x', x) + b*

ai>0

@ Non-zero slack can only occur when of = C
o The contribution of outlier in the decision rule will be at most

C

e The trade-off between accuracy and regularization directly
controls by C

@ The points for which 0 < a} < C lie at the bounding planes
e This will help us to find b*

29/76



Two-spiral Dataset
(94 white Dots & 94 Red Dots)
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Learning in Feature Space
(Could Simplify the Classification Task)

@ Learning in a high dimensional space could degrade
generalization performance
e This phenomenon is called curse of dimensionality
o By using a kernel function, that represents the inner product
of training example in feature space, we never need to
explicitly know the nonlinear map
e Even do not know the dimensionality of feature space
@ There is no free lunch
e Deal with a huge and dense kernel matrix
@ Reduced kernel can avoid this difficulty
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X————F

nonlinear pattern in data space

Feature map

approximate linear pattern in feature space
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Linear Machine in Feature Space

Let ¢ : X — F be a nonlinear map from the input space to some

feature space
The classifier will be in the form(primal):

) = (3 woi(x))+b

j=t

Make it in the dual form:

l
F(x) = (Q_ami(¢(x)- ¢(x))) + b
i=1
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Kernel:Represent Inner Product
in Feature Space

Definition: A kernel is a function K : X x X — R
such that for all x,z € X

K(x,z) = (o(x)-¢(2))

where ¢ : X — F
The classifier will become:

14
f(x) = O aiyiK(x',x))+b
i=1
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A Simple Example of Kernel
Polynomial Kernel of Degree 2: K(x,z)=(x, z)

2

Let x = { il ] ,Z = [ 21 } € R? and the nonlinear map
2

X2
¢ : R? —— R3 defined by ¢(x) = [ xi2 ] .
V2x1x0
Then ($(x), ¢(2)) = (x,2)* = K(x, 2)

@ There are many other nonlinear maps, 1(x), that satisfy the

relation: (1(x), ¥ (2)) = (x, z)2 = K(x, 2)
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Power of the Kernel Technique

Consider a nonlinear map ¢ : R” —— RP that consists of distinct
features of all the monomials of degree d.

Then p = <n+j—1).

XEX%X:;‘XZ‘:>XOOOXOXOOOOXOOOO

For example: n=11, d=10, p=92378
o Is it necessary? We only need to know (¢(x), #(z))!
@ This can be achieved K(x,z) = (x, z)¢

36
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Kernel Technique
Based on Mercer's Condition(1909)

@ The value of kernel function represents the inner product of
two training points in feature space
@ Kernel function merge two steps
© map input data from input space to feature space (might be
infinite dim.)
@ do inner product in the feature space
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Example of Kernel N
K(A, B) : R" x R —; REXE

Ac R ac R ueR, dis an integer:

@ Polynomial Kernel:
o (AAT + paa™)?d (Linear KernelAAT : i =0,d = 1)
e Gaussian (Radial Basis) Kernel:

o K(AAT)j = e HIA=AIL j i—1 . m

o The jj-entry of K(A, AT) represents the "similarity” of data
points A; and A;
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Nonlinear Support Vector Machine
(Applying the Kernel Trick)

1-Norm Soft Margin Linear SVM:

1
max 1Ta— EoﬁDAATDa st. 1"Da=0, 0<a<Cl
a€eR

@ Applying the kernel trick and running linear SVM in the
feature space without knowing the nonlinear mapping
1-Norm Soft Margin Nonlinear SVM:

1
max1Ta — Za" DK(A, A7) Do
a€R? 2

s.t. 1"Da=0, 0<a<Cl

o All you need to do is replacing AAT by K(A,AT)
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1-Norm SVM
(Different Measure of Margin)

1-Norm SVN:

(Wb52§H+M | w s +C17¢

D(Aw +1b) + ¢ > 1
£>0

Equivalent to:

min 1s+ C17¢
(s,w,b,§)€R2"+1+e

D(Aw—i—lb)—i—{zl
—s<w<s
£>0

Good for feature selection and similar to the LASSO
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Smooth Support Vector Machine
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Support Vector Machine Formulations

Two Different Measures of Training Error

2-Norm Soft Margin (Primal form):

. 2 2
min Swliz + SNl
(w,b,g)eR"HH

D(Aw+1b)+&>1
1-Norm Soft Margin (Primal form):
min Ywl3+c17¢
(w,b,&)ER"+1+l
D(Aw+1b)+£>1, €>0
@ Margin is maximized by minimizing reciprocal of margin.
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SVM as an Unconstrained Minimization Problem

min - $11¢l3 + 3 (Il + 1)
st. D(Aw+1b)+£>1

At the solution of (QP) : £ = (1 — D(Aw + 1b))+ where
()4 = max{:,0}.

(QP)

Hence (QP) is equivalent to the nonsmooth SVM:

e 1
min = |(1 = D(Aw +16)). [} + 5 (|wl} + 52)

w,

e Change (QP) into an unconstrained MP
@ Reduce (n+1+¢) variables to (n+1) variables
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Smooth the Plus Function: Integrate (1)

p(X; /3) =X+ /% |og(]_ + 6—;‘3X)

The Step Function (z),. and the Sigmoid-Function

—1
1fe o=

The Plus Function (x)4 an

d the p-Function p(z, 5)

44 /76



SSVM: Smooth Support Vector Machine

@ Replacing the plus function ()4 in the nonsmooth SVM by
the smooth p(-, 3), gives our SSVM:

S 1Ip((1 ~ D(Aw + 16)), D) + 2wl + )

min
(w,b)ERn+1 2

@ The solution of SSVM converges to the solution of
nonsmooth SVM as (3 goes to infinity.
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Newton-Armijo Algorithm
bs(w, b) = 5|p((1 — D(Aw +1b)), 5)|5 + 3([|wl}3 + b%)

Start with any (w?, by) € R™1 . Having (w', b;), stop if
Vog(w', bi) =0, else :
@ Newton Direction :

V2os(w', bj)d = —Vog(w', b;)"
@ Armijo Stepsize :
b)) + \id'.
yoee)

(WH_la bf-i-l) - (
1 1
\: il
such that Armijos rule is satisfied
o globally and quadratically converge to unique solution in
a finite number of steps
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Newton-Armijo Method: Quadratic Approximation of
SSVM

@ The sequence {(Wi, b,-)} generated by solving a quadratic
approximation of SSVM, converges to the unique solution
(w*, b*)of SSVM at a quadratic rate.

o Converges in 6 to 8 iterations
@ At each iteration we solve a linear system of:

e n+1 equations in n+1 variables
o Complexity depends on dimension of input space

@ It might be needed to select a stepsize
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Nonlinear Smooth Support Vector Machine
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The lllustration of Nonlinear SVM

nonlinear pattern in data space approximate linear pattern in feature space
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Nonlinear SSVM Motivation

o Linear SVM: (Linear separator: x' w +b=10)

H C 1
i, SIEB R0+ o

st.  DAw-+1b)+¢>1

By QP “duality”, w = AT Do Maximizing the margin in the
“dual space” gives:

Jmin, - SIEIB + 3ol + 52)

s.t. D(AATDa +1b) + ¢ > 1
o Dual SSVM with separator: x' ATDa 4+ b =10

- C 1
min —[|p(1 — D(AA"Da +1b), B)[5 + 5 (llell3 + b°)

)
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Kernel Trick

@ We can use the value of kernel function to represent the inner
product of two training points in feature space as follows:

K(x2) =< 6(x), 6(2) > .
@ The most popular kernel function is the Gaussian kernel
K(x,z) = e x=ll3,

@ The kernel matrix K(A, AT),x, represents the inner product
of all points in the feature space where
K(A, AT)U = K(X,’, Xj).

@ Replace AAT by a nonlinear kernel K(A, AT) without defining
a explicit feature map ¢
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Nonlinear Smooth SVM
Nonlinear Classifier: K(x",A")Da + b =10

@ Replace AAT by a nonlinear kernel K(A,AT) :

. C 1
min —[p(1 ~ D(K(A, AT)Da+1b, B)|F + 5 (lla]3 + b°)

@ Use Newton-Armijo algorithm to solve the problem
e Each iteration solves {41 linear equations in {41 variables

@ Nonlinear classifier depends on the data points with nonzero
coefficients :

K(x",A")Da+b=">" ajyK(A,x)+b=0

aj>0
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Reduced Support Vector Machine
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v
Nonlinear SVM: A Full Model f(x) = > a;k(x,A;) + b
i=1

@ Nonlinear SVM uses a full representation for a classifier or
regression function:
e As many parameters «; as the data points
@ Nonlinear SVM function is a Ii?ear combination of basis
functions,# = {1} U {k(-,x")},_;
e /3 is an overcomplete dictionary of functions when is large or
approaching infinity
o Fitting data to an overcomplete full model may
e Increase computational difficulties model complexity
e Need more CPU time and memory space
e Be in danger of overfitting
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Reduced SVM: A Compressed Model

It's desirable to cut down the model complexity

@ Reduced SVM randomly selects a small subset S to generate
the basis functions B:
S={(&,7)|i=1,...,00 C SB={1} U{k(- %)},

0
e RSVM classifier is in the form f(x) = > Uik(x,x') + b
i=1

@ The parameters are determined by fitting entire data
¢
. 1/11—112 2
w7 €1 2l + 2
st.  D(K(AANT+1b)+¢>1
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Nonlinear SVM vs. RSVM )
K(A,AT) e R vs. K(A,AT) € R

Nonlinear SVM RSVM
! l
i nglfﬂr ez + %) Jmin C;@+ L[l + 52)

D(K(A,AT)a+1b)+&>1 D(K(A,A )i+ 1b)+ € > 1

where K(A, A1) = k(x',x) where K(A,AT); = k(x', %)

K(A, A) . — (A, ) :
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A Nonlinear Kernel Application

Checkerboard Training Set: 1000 Points in Separate 486
Asterisks from 514 Dots
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Conventional SVM Result on Checkerboard

Using 50 Randomly Selected Points Out of 1000
K(Z, ZT) € R50x50

58 /76



RSVM Result on Checkerboard
Using SAME 50 Random Points Out of 1000

K(A,ﬁT) c R1000x50
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Merits of RSVM
Compressed Model vs. Full Model

@ Computation point of view:

o Memory usage: Nonlinear SVM ~ O(¢?)
Reduced SVM ~ O(¢ x ¢)
o Time complexity: Nonlinear SVM ~ O(¢3)

Reduced SVM ~ O(Z°)
@ Model complexity point of view:

o Compressed model is much simpler than full one
e This may reduced the risk of overfitting

@ Successfully applied to other kernel based algorithms
e SVR, KFDA and Kernel canonical correction analysis
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Automatic Model Selection via Uniform Design
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Model Selection for SVMs

@ Choosing a good parameter setting for a better generalization
performance of SVMs is the so called model selection problem

@ It will be desirable to have an effective and automatic model
selection scheme to make SVMs practical for real applications

e In particular for the people who are not familiar with
parameters tuning procedure in SVMs

@ Focus on selecting the combinations of regularization
parameter C and width parameter y in the Gaussian kernel
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Searching the Optimal Combination of Two Parameters

@ Model selection can be treated as an optimization problem:
e The objective function is only vaguely specified
o It has many local maxima and minima
o Evaluating the objective function value is very expensive task
which includes:

e Training a SVM with a particular parameter setting
@ Testing the SVM resulting model on a validation set
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Validation Set Accuracy Surface
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Where Are our Tuning Parameters

. _ A2
o Gaussian kernel:K(A,AT); = e VA=Al

@ Conventional nonlinear SVM:

max 17a - 2a"DK(A,AT)Da
acR
e'Da=0
0<a< (1

@ Nonlinear SSVM:
min §|p(1 — D(K(A, AT)Da + 1b, )|I3 + 3(lal3 + b%)

)
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Heuristic for Determining Parameters Search Range

@ The parameter in Gaussian kernel is more sensitive than
parameter C in objective function

@ The range of y is determined by the closest pair of data
points in the training set such that
0.15 < e~rllu=vI: < 0.999
@ For massive dataset, you may try other heuristics
e.g., sampling or the shortest distance to centriod

@ We want to scale the distance factor in the Gaussian kernel
automatically
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Heuristic for Determining Parameters Search Range(cont.)

@ Reduced kernel always has a larger C than full kernel since the
reduced model has been simplified

o Full kernel:C_Range=[le-2, le+4]
o Reduced kernel:C_Range=[1e0, le+6]
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Uniform Experimental Design

@ The uniform design (UD) is one kind of space filling designs
that seeks its design points to be uniformly scattered on the
experimental domain

@ UD can be used for industrial experiments when the
underlying model is unknown or only vaguely specified

e Our SVM model selection problem is in this case

@ Once the search domain and number of levels for each
parameter are determined the candidate set of parameter
combinations can be found by a UD table
Available at: http://www.math.hkbu.edu.hk/UniformDesign
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UD Sampling Patterns

UD:

log,v ®
€
€
log,C
The 5 runs UD sampling pattern
log,v 5 log,v
D
© b
> >
©
v O
>
5
>
> ) p
b
d v
log,C log,C
The 9 runs UD sampling pattern The 13 runs UD sampling pattern

Uniform Design
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Nested UD-based Method(1/2)

N
Iogz Y % 1092 A @ : @ I
O ;
o - ) ® ®
O ° Py
0 o ¢ &
o e %o
7 .J &
o 1 ) °
(S
o o o
O
Faa¥ \3 O
~ O : I o
7
log,C log,C
© - the best point @ - the new ud point
@ - the duplicate point
1st stage 2nd stage
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Nested UD-based Method(2/2)

log,v o log,v o
O (@]
""" (@] (@]
O JD (6]
© Q
O O ®
O —®— O
O o
i L) N Py ~
A 4
log,C log,C
© - the best point @ - the new ud point

@ - the duplicate point
1st stage 2nd stage
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Experimental Results(1/2)

Problem SSVM
DOE uD1 uD2

banana | 0.1207+0.0071 | 0.1219+0.0070 | 0.1185+0.0070
image | 0.0289:0.0058 | 0.0307+0.0040 | 0.0279+0.0061
splice | 0.1015+0.0030 | 0.1005+0.0019 | 0.1003+0.0030
waveform| 0.1048+0.0046 | 0.1055+0.0035 | 0.1087+0.0053
tree | 0.1183+0.0023 | 0.1171+0.0026 | 0.1189+0.0029
adult | 0.1604+0.0011 | 0.1605+0.0020 | 0.1611+0.0021
web ]0.0232+0.0007 | 0.0236+0.0014 | 0.0229+0.0020
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Experimental Results(2/2)

Problem RSVM

DOE uD1 uD2
banana | 0.1203+0.0038 | 0.1229+0.0077 | 0.1239+0.0053
image | 0.0461:0.0082 | 0.0437+0.0082 | 0.0429+0.0081
splice | 0.1342:0.0069 | 0.1346+0.0041 | 0.1360+0.0053
waveform| 0.1117+0.0044 | 0.1138+0.0040 | 0.1121+0.0039
tree | 0.1186+0.0033 | 0.1193+0.0054 | 0.1178+0.0040
adult | 0.1621+0.0017 | 0.1614+0.0019 | 0.1625+0.0016
web | 0.0266+0.0039 | 0.0248+0.0014 | 0.0258+0.0020
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Conclusions

@ SSVM: A new formulation of support vector machines as a
smooth unconstrained minimization problem

o Can be solved by a fast Newton-Armijo algorithm
o No optimization (LP, QP) package is needed

@ RSVM: A new nonlinear method for massive datasets

e Overcomes two main difficulties of nonlinear SVMs
e Reduces the memory storage & computational time

@ Rectangular kernel: novel idea for kernel-based Algs.

@ Applied uniform design to SVMs model selection that can be
done automatically
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