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Binary Classification Problem
(A Fundamental Problem in Data Mining)

Find a decision function (classifier) to discriminate two
categories data sets.

Supervised learning in Machine Learning

Decision Tree, Neural Network, k-NN and Support Vector
Machines, etc.

Discrimination Analysis in Statistics

Fisher Linear Discriminator

Successful applications:

Marketing, Bioinformatics, Fraud detection
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Binary Classification Problem

Given a training dataset

S = {(x i , yi )|x i ∈ Rn, yi ∈ {−1, 1}, i = 1, . . . , `}

x i ∈ A+ ⇔ yi = 1 & x i ∈ A− ⇔ yi = −1

Main Goal:

Predict the unseen class label for new data

Find a function f : Rn → R by learning from data

f (x) ≥ 0⇒ x ∈ A+ and f (x) < 0⇒ x ∈ A−

The simplest function is linear: f (x) = w>x + b
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Binary Classification Problem
Linearly Separable Case

x>w + b = 0

x>w + b = −1

x>w + b = +1

A-

Malignant

A+

Benign

w
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Perceptron Algorithm (Primal Form)
Rosenblatt, 1956

An on-line and mistake-driven procedure Repeat:
for i = 1 to `

if yi (〈wk · x i 〉+ bk) ≤ 0 then
wk+1 ← xk + ηyix

i

bk+1 ← bk + ηyiR
2 R = max

1≤i≤`
‖x i‖

k ← k + 1
end if

until no mistakes made within the for loop return: k, (wk , bk).
What is k ?
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yi(〈w k+1 · x i〉+ bk+1) > yi(〈w k · x i〉) + bk ?
w k+1 ←− w k + ηyix

i and bk+1 ←− bk + ηyiR
2

yi (〈wk+1 · x i 〉+ bk+1) = yi (〈(wk + ηyix
i ) · x i 〉+ bk + ηyiR

2)

= yi (〈wk · x i 〉+ bk) + yi (ηyi (〈x i · x i 〉+ R2))

= yi (〈wk · x i 〉+ bk) + η(〈x i · x i 〉+ R2)

R = max
1≤i≤`

‖x i‖
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Perceptron Algorithm Stop in Finite Steps

Theorem(Novikoff)
Let S be a non-trivial training set, and let

R = max
1≤i≤`

‖x i‖

Suppose that there exists a vector wopt such that ‖wopt‖ = 1 and

yi (〈wopt · x i 〉+ bopt) for 1 ≤ i ≤ `.

Then the number of mistakes made by the on-line perceptron
algorithm on S is almost (2R

r )2.
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Perceptron Algorithm (Dual Form)

w =
∑̀
i=1

αiyix
i

Given a linearly separable training set S and α = 0 , α ∈ R` ,
b = 0 , R = max

1≤i≤`
‖xi‖.

Repeat: for i = 1 to `

if yi (
∑̀
j=1

)αiyi 〈x j · x i 〉+ b) ≤ 0 then

αi ← αi + 1 ; b ← b + yiR
2

end if
end for

Until no mistakes made within the for loop return: (α, b)
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What We Got in the DualForm PerceptronAlgorithm?

The number of updates equals:
∑̀
i=1

αi = ‖α‖1 ≤ (2R
r )2

αi > 0 implies that the training point (xi , yi ) has been
misclassified in the training process at least once.

αi = 0 implies that removing the training point (xi , yi ) will
not affect the final results.

The training data only appear in the algorithm through the
entries of the Gram matrix,G ∈ R`×` which is defined below:

Gij = 〈xi , xj〉
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Support Vector Machine
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Binary Classification Problem
Linearly Separable Case

x>w + b = 0

x>w + b = −1

x>w + b = +1

A-

Malignant

A+

Benign

w
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Support Vector Machines
Maximizing the Margin between Bounding Planes

x>w + b = −1

x>w + b = +1

A-
A+

w

2
‖w‖2 = Margin
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Why Use Support Vector Machines?
Powerful tools for Data Mining

SVM classifier is an optimally defined surface

SVMs have a good geometric interpretation

SVMs can be generated very efficiently

Can be extended from linear to nonlinear case

Typically nonlinear in the input space
Linear in a higher dimensional ”feature space”
Implicitly defined by a kernel function

Have a sound theoretical foundation

Based on Statistical Learning Theory
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Why We Maximize the Margin?
(Based on Statistical Learning Theory)

The Structural Risk Minimization (SRM):

The expected risk will be less than or equal to empirical risk
(training error)+ VC (error) bound

‖w‖2 ∝ VC bound

min VC bound⇔ min 1
2‖w‖

2
2 ⇔ max Margin

15 / 76



Summary the Notations

Let S = {(x1, y1), (x
2, y2), . . . , (x

`, y`) be a training dataset and
represented by matrices

A =


(x1)>

(x2)>

...
(x`)>

 ∈ R`×n,D =

y1 · · · 0
...

. . .
...

0 · · · y`

 ∈ R`×`

Aiw + b ≥ +1, for Dii = +1
Aiw + b ≤ −1, for Dii = −1 , equivalent to D(Aw + 1b) ≥ 1 ,
where 1 = [1, 1, . . . , 1]> ∈ R`
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Support Vector Classification
(Linearly Separable Case, Primal)

The hyperplane (w , b) is determined by solving the minimization
problem:

min
(w ,b)∈Rn+1

1

2
‖w‖22

D(Aw + 1b) ≥ 1,

It realizes the maximal margin hyperplane with geometric margin

γ =
1

‖w‖2
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Support Vector Classification
(Linearly Separable Case, Dual Form)

The dual problem of previous MP:

max
α∈R`

1>α− 1

2
α>DAA>Dα

subject to
1>Dα = 0, α ≥ 0

Applying the KKT optimality conditions, we have A>Dα. But
where is b ?
Don’t forget

0 ≤ α ⊥ D(Aw + 1b)− 1 ≥ 0
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Dual Representation of SVM

(Key of Kernel Methods: w = A>Dα∗ =
∑̀
i=1

yiα
∗
i A
>
i )

The hypothesis is determined by (α∗, b∗)

h(x) = sgn(〈x · A>Dα∗〉+ b∗)

= sgn(
∑̀
i=1

yiα
∗
i 〈x i · x〉+ b∗)

= sgn(
∑
α∗i >0

yiα
∗
i 〈x i · x〉+ b∗)

Remember : A>i = xi
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Soft Margin SVM
(Nonseparable Case)

If data are not linearly separable

Primal problem is infeasible
Dual problem is unbounded above

Introduce the slack variable for each training point

yi (w
>x i + b) ≥ 1− ξi , ξi ≥ 0, ∀i

The inequality system is always feasible e.g.

w = 0, b = 0, ξ = 1
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x>w + b = −1

x>w + b = +1

A-
A+

w

ξi

ξj

2
‖w‖2 = Margin
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Robust Linear Programming
Preliminary Approach to SVM

min
w ,b,ξ

1>ξ

s.t. D(Aw + 1b) + ξ ≥ 1 (LP)

ξ ≥ 0

where ξ is nonnegative slack(error) vector

The term 1>ξ, 1-norm measure of error vector, is called the
training error

For the linearly separable case, at solution of(LP): ξ = 0
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Support Vector Machine Formulations
(Two Different Measures of Training Error)

2-Norm Soft Margin:

min
(w ,b,ξ)∈Rn+1+`

1

2
‖w‖22 +

C

2
‖ξ‖22

D(Aw + 1b) + ξ ≥ 1

1-Norm Soft Margin (Conventional SVM)

min
(w ,b,ξ)∈Rn+1+`

1

2
‖w‖22 + C1>ξ

D(Aw + 1b) + ξ ≥ 1

ξ ≥ 0
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Tuning Procedure
How to determine C ?Tuning Procedure

How to determine C?

overfitting

The final value of parameter is one with 
the maximum testing set correctness !

C

The final value of parameter is one with the maximum testing set
correctness!
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Lagrangian Dual Problem

max
α,β

min
x∈Ω

L(x , α, β)

subject to α ≥ 0

m
max
α,β

θ(α, β)

subject to α ≥ 0

whereθ(α, β) = inf
x∈Ω

L(x , α, β)
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1-Norm Soft Margin SVM
Dual Formalation

The Lagrangian for 1-norm soft margin:

L(w , b, ξ, α, γ) =
1

2
w>w + C1>ξ +

α>[1− D(Aw + 1b)− ξ]− γ>ξ

where α ≥ 0 & γ ≥ 0.
The partial derivatives with respect to primal variables equal zeros:

∂L(w , b, ξ, α)

∂w
= w − A>Dα = 0,

∂L(w , b, ξ, α)

∂b
= 1>Dα = 0,

∂L(w , b, ξ, α)

∂ξ
= C1− α− γ = 0.
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Substitute: w = A>Dα, C1>ξ = (α + γ)>ξ
1>Dα = 0, in L(w , b, ξ, α, γ)

L(w , b, ξ, α, γ) =
1

2
w>w + C1>ξ +

α>[1− D(Aw + 1b)− ξ]− γ>ξ

where α ≥ 0 & γ ≥ 0

θ(α, γ) =
1

2
α>DAA>Dα+ 1>α− α>DA(A>Dα)

= −1

2
α>DAA>Dα+ 1>α

s.t. 1>Dα = 0, α− γ = C1 and α ≥ 0 & γ ≥ 0
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Dual Maximization Problem
for 1-Norm Soft Margin

Dual:

max
α∈R`

1>α− 1
2α

>DAA>Dα

1>Dα = 0

0 ≤ α ≤ C1

The corresponding KKT complementarity

0 ≤ α ⊥ D(Aw + 1b) + ξ − 1 ≥ 0

0 ≤ ξ ⊥ α− C1 ≤ 0
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Slack Variables for 1-Norm
Soft Margin SVM f (x) =

∑
α∗i >0

yiα
∗
i 〈x i , x〉+ b∗

Non-zero slack can only occur when α∗i = C

The contribution of outlier in the decision rule will be at most
C
The trade-off between accuracy and regularization directly
controls by C

The points for which 0 < α∗i < C lie at the bounding planes

This will help us to find b∗
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Two-spiral Dataset
(94 white Dots & 94 Red Dots)

Two-spiral Dataset
(94 White Dots & 94 Red Dots)
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Learning in Feature Space
(Could Simplify the Classification Task)

Learning in a high dimensional space could degrade
generalization performance

This phenomenon is called curse of dimensionality

By using a kernel function, that represents the inner product
of training example in feature space, we never need to
explicitly know the nonlinear map

Even do not know the dimensionality of feature space

There is no free lunch
Deal with a huge and dense kernel matrix

Reduced kernel can avoid this difficulty
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Φ

X −−− −→F

Feature map

nonlinear pattern in data space approximate linear pattern in feature space
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Linear Machine in Feature Space

Let φ : X −→ F be a nonlinear map from the input space to some
feature space
The classifier will be in the form(primal):

f (x) = (
?∑

j=1

wjφj(x)) + b

Make it in the dual form:

f (x) = (
∑̀
i=1

αiyi 〈φ(x i ) · φ(x)〉) + b
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Kernel:Represent Inner Product
in Feature Space

Definition: A kernel is a function K : X × X −→ R
such that for all x , z ∈ X

K (x , z) = 〈φ(x) · φ(z)〉

where φ : X −→ F
The classifier will become:

f (x) = (
∑̀
i=1

αiyiK (x i , x)) + b
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A Simple Example of Kernel
Polynomial Kernel of Degree 2: K(x,z)=〈x , z〉2

Let x =

[
x1

x2

]
, z =

[
z1

z2

]
∈ R2 and the nonlinear map

φ : R2 7−→ R3 defined by φ(x) =

 x2
1

x2
2√

2x1x2

.

Then 〈φ(x), φ(z)〉 = 〈x , z〉2 = K (x , z)

There are many other nonlinear maps, ψ(x), that satisfy the
relation: 〈ψ(x), ψ(z)〉 = 〈x , z〉2 = K (x , z)
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Power of the Kernel Technique

Consider a nonlinear map φ : Rn 7−→ Rp that consists of distinct
features of all the monomials of degree d.

Then p =

(
n + d − 1

d

)
.

x3
1x1

2x4
3x4

4 =⇒ x o o o x o x o o o o x o o o o

For example: n=11, d=10, p=92378

Is it necessary? We only need to know 〈φ(x), φ(z)〉!
This can be achieved K (x , z) = 〈x , z〉d
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Kernel Technique
Based on Mercer’s Condition(1909)

The value of kernel function represents the inner product of
two training points in feature space

Kernel function merge two steps
1 map input data from input space to feature space (might be

infinite dim.)
2 do inner product in the feature space
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Example of Kernel
K (A, B) : R`×n × Rn×˜̀ 7−→ R`×˜̀

A ∈ R`×n, a ∈ R`, µ ∈ R, d is an integer:

Polynomial Kernel:

(AA> + µaa>)d• (Linear KernelAA> : µ = 0, d = 1)

Gaussian (Radial Basis) Kernel:

K (A,A>)ij = e−µ‖Ai−Aj‖2
2 , i , j = 1, ...,m

The ij-entry of K (A,A>) represents the ”similarity” of data
points Ai and Aj
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Nonlinear Support Vector Machine
(Applying the Kernel Trick)

1-Norm Soft Margin Linear SVM:

max
α∈R`

1>α− 1

2
α>DAA>Dα s.t. 1>Dα = 0, 0 ≤ α ≤ C1

Applying the kernel trick and running linear SVM in the
feature space without knowing the nonlinear mapping

1-Norm Soft Margin Nonlinear SVM:

max
α∈R`

1>α− 1

2
α>DK (A,A>)Dα

s.t. 1>Dα = 0, 0 ≤ α ≤ C1

All you need to do is replacing AA> by K (A,A>)
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1-Norm SVM
(Different Measure of Margin)

1-Norm SVN:

min
(w ,b,ξ)∈Rn+1+`

‖ w ‖1 +C1>ξ

D(Aw + 1b) + ξ ≥ 1

ξ ≥ 0

Equivalent to:

min
(s,w ,b,ξ)∈R2n+1+`

1s + C1>ξ

D(Aw + 1b) + ξ ≥ 1

−s ≤ w ≤ s

ξ ≥ 0

Good for feature selection and similar to the LASSO
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Smooth Support Vector Machine
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Support Vector Machine Formulations
Two Different Measures of Training Error

2-Norm Soft Margin (Primal form):

min
(w,b,ξ)∈Rn+1+`

1
2‖w‖

2
2 + C

2 ‖ξ‖
2
2

D (Aw + 1b) + ξ ≥ 1

1-Norm Soft Margin (Primal form):

min
(w,b,ξ)∈Rn+1+`

1
2‖w‖

2
2 + C1>ξ

D (Aw + 1b) + ξ ≥ 1, ξ ≥ 0

Margin is maximized by minimizing reciprocal of margin.
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SVM as an Unconstrained Minimization Problem

min
w ,b

C
2 ‖ξ‖

2
2 + 1

2

(
‖w‖22 + b2

)
s.t. D (Aw + 1b) + ξ ≥ 1

(QP)

At the solution of (QP) : ξ = (1− D(Aw + 1b))+ where
(·)+ = max {·, 0}.

Hence (QP) is equivalent to the nonsmooth SVM:

min
w ,b

C

2
‖(1− D(Aw + 1b))+‖22 +

1

2
(‖w‖22 + b2)

Change (QP) into an unconstrained MP

Reduce (n+1+`) variables to (n+1) variables
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Smooth the Plus Function: Integrate ( 1
1+ε−βx )

p(x , β) := x + 1
β log(1 + ε−βx)
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SSVM: Smooth Support Vector Machine

Replacing the plus function (·)+ in the nonsmooth SVM by
the smooth p(·, β), gives our SSVM:

min
(w ,b)∈Rn+1

C

2
‖p((1− D(Aw + 1b)), β)‖22 +

1

2
(‖w‖22 + b2)

The solution of SSVM converges to the solution of
nonsmooth SVM as β goes to infinity.
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Newton-Armijo Algorithm
Φβ(w , b) = C

2 ‖p((1−D(Aw + 1b)), β)‖22 + 1
2(‖w‖

2
2 + b2)

Start with any (w0, b0) ∈ Rn+1 . Having (w i , bi ), stop if
∇Φβ(w i , bi ) = 0, else :

1 Newton Direction :

∇2Φβ(w i , bi )d
i = −∇Φβ(w i , bi )

>

2 Armijo Stepsize :

(w i+1, bi+1) = (w i , bi ) + λid
i .

λi ∈ {1,
1

2
,
1

4
, ...}

such that Armijos rule is satisfied

globally and quadratically converge to unique solution in
a finite number of steps
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Newton-Armijo Method: Quadratic Approximation of
SSVM

The sequence
{
(w i , bi )

}
generated by solving a quadratic

approximation of SSVM, converges to the unique solution
(w∗, b∗)of SSVM at a quadratic rate.

Converges in 6 to 8 iterations

At each iteration we solve a linear system of:

n+1 equations in n+1 variables
Complexity depends on dimension of input space

It might be needed to select a stepsize
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Nonlinear Smooth Support Vector Machine
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The Illustration of Nonlinear SVM

Φ

X −−− −→F

Feature map

nonlinear pattern in data space approximate linear pattern in feature space
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Nonlinear SSVM Motivation

Linear SVM: (Linear separator: x>w + b = 0 )

min
ξ≥0,w ,b

C
2 ‖ξ‖

2
2 + 1

2(‖w‖22 + b2)

s.t. D(Aw + 1b) + ξ > 1
(QP)

By QP “duality”, w = A>Dα Maximizing the margin in the
“dual space” gives:

min
ξ≥0,α,b

C
2 ‖ξ‖

2
2 + 1

2(‖α‖22 + b2)

s.t. D(AA>Dα+ 1b) + ξ > 1

Dual SSVM with separator: x>A>Dα+ b = 0

min
α,b

C

2
‖p(1− D(AA>Dα+ 1b), β)‖22 +

1

2
(‖α‖22 + b2)
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Kernel Trick

We can use the value of kernel function to represent the inner
product of two training points in feature space as follows:

K (x, z) =< φ(x), φ(z) > .

The most popular kernel function is the Gaussian kernel

K (x, z) = e−γ||x−z||22 .

The kernel matrix K (A,A>)n×n represents the inner product
of all points in the feature space where
K (A,A>)ij = K (xi , xj).

Replace AA> by a nonlinear kernel K (A,A>) without defining
a explicit feature map φ
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Nonlinear Smooth SVM
Nonlinear Classifier: K (x>, A>)Dα + b = 0

Replace AA> by a nonlinear kernel K (A,A>) :

min
α,b

C

2
‖p(1− D(K (A,A>)Dα+ 1b, β)‖22 +

1

2
(‖α‖22 + b2)

Use Newton-Armijo algorithm to solve the problem

Each iteration solves `+1 linear equations in `+1 variables

Nonlinear classifier depends on the data points with nonzero
coefficients :

K (x>,A>)Dα+ b =
∑
αj>0

αjyjK (Aj , x) + b = 0

52 / 76



Reduced Support Vector Machine
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Nonlinear SVM: A Full Model f (x) =
∑̀
i=1

αik(x , Ai) + b

Nonlinear SVM uses a full representation for a classifier or
regression function:

As many parameters αi as the data points

Nonlinear SVM function is a linear combination of basis
functions,β = {1} ∪

{
k(·, x i )

}`

i=1
β is an overcomplete dictionary of functions when is large or
approaching infinity

Fitting data to an overcomplete full model may

Increase computational difficulties model complexity
Need more CPU time and memory space
Be in danger of overfitting
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Reduced SVM: A Compressed Model
It’s desirable to cut down the model complexity

Reduced SVM randomly selects a small subset S̄ to generate
the basis functions B:

S̄ = {(x̄ i , ȳi )
∣∣i = 1, . . . , ¯̀} ⊆ S ,B= {1} ∪

{
k(·, x i )

}`

i=1

RSVM classifier is in the form f (x) =
∑̀
i=1

uik(x , x i ) + b

The parameters are determined by fitting entire data

min
u,b,ξ>0

C
∑̀
j=1

ξj + 1
2(

∥∥u
∥∥2

2
+ b2)

s.t. D(K (A, Ā>)ū + 1b) + ξ > 1
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Nonlinear SVM vs. RSVM
K (A, A>) ∈ R`×` vs. K (A, Ā>) ∈ R`×¯̀

Nonlinear SVM RSVM

min
α,b,ξ>0

C
∑̀
j=1

ξj + 1
2(

∥∥α∥∥2

2
+ b2) min

u,b,ξ>0
C

∑̀
j=1

ξj + 1
2(

∥∥u
∥∥2

2
+ b2)

D(K (A,A>)α+ 1b) + ξ > 1 D(K (A, Ā>)ū + 1b) + ξ > 1
where K (A,A>)ij = k(x i , x j) where K (A, Ā>)ij = k(x i , x̄ j)

Nonlinear SVM vs. RSVM
vs.

D(K(A,AöT)uö + eb) + ø>e

RSVM
min
u,b,ø>0

C
P
j=1

m

øj + 2
1
ííuíí2

2

D(K(A,AT)ë+ eb) + ø>e

Nonlinear SVM
min
ë,b,ø>0

C
P
j=1

m

øj + 2
1
ííëíí2

2

K(A,AT) ∈ Rmâm K(A,AöT) ∈ Rmâmö

K(A,A0) : K(A,Aà0) :

K(A,AT)ij = k(xi, xj) K(A,Aö
T
)ij = k(xi, xöj)where and
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A Nonlinear Kernel Application
Checkerboard Training Set: 1000 Points in Separate 486
Asterisks from 514 Dots
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Figure 4.14: RSVM: Checkerboard resulting from randomly selected 100 points and used
in a reduced Gaussian kernel SVM (4.49). The resulting nonlinear surface, separating
white and black areas, generated using the entire 1000-point dataset, depends explicitly
on the 100 points only. The remaining 900 points can be thrown away once the separating
surface has been generated. Correctness on a 39601-point test set averaged 97.55% on 15
randomly chosen 100-point sets, with a standard deviation of 0.0034 and best correctness
of 98.26% depicted above.
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Conventional SVM Result on Checkerboard
Using 50 Randomly Selected Points Out of 1000

K (A, A
>
) ∈ R50×50

51
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Figure 4.11: Checkerboard resulting from a randomly selected 50 points, out of a 1000-
point dataset, and used in a smooth Gaussian kernel SVM (3.43). The resulting nonlinear
surface, separating white and black areas, generated using the 50 random points only,
depends explicitly on those points only. Correctness on a 39601-point test set averaged
43.60% on 15 randomly chosen 50-point sets, with a standard deviation of 0.0895 and
best correctness of 61.03% depicted above.

58 / 76



RSVM Result on Checkerboard
Using SAME 50 Random Points Out of 1000

K (A, A
>
) ∈ R1000×50
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Figure 4.12: RSVM: Checkerboard resulting from randomly selected 50 points and used
in a reduced Gaussian kernel SVM (4.49). The resulting nonlinear surface, separating
white and black areas, generated using the entire 1000-point dataset, depends explicitly
on the 50 points only. The remaining 950 points can be thrown away once the separating
surface has been generated. Correctness on a 39601-point test set averaged 96.7% on 15
randomly chosen 50-point sets, with a standard deviation of 0.0082 and best correctness
of 98.04% depicted above.
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Merits of RSVM
Compressed Model vs. Full Model

Computation point of view:

Memory usage: Nonlinear SVM ∼ O(`2)
Reduced SVM ∼ O(`× `)

Time complexity: Nonlinear SVM ∼ O(`3)

Reduced SVM ∼ O(`
3
)

Model complexity point of view:

Compressed model is much simpler than full one
This may reduced the risk of overfitting

Successfully applied to other kernel based algorithms

SVR, KFDA and Kernel canonical correction analysis
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Automatic Model Selection via Uniform Design
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Model Selection for SVMs

Choosing a good parameter setting for a better generalization
performance of SVMs is the so called model selection problem

It will be desirable to have an effective and automatic model
selection scheme to make SVMs practical for real applications

In particular for the people who are not familiar with
parameters tuning procedure in SVMs

Focus on selecting the combinations of regularization
parameter C and width parameter γ in the Gaussian kernel
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Searching the Optimal Combination of Two Parameters

Model selection can be treated as an optimization problem:

The objective function is only vaguely specified
It has many local maxima and minima
Evaluating the objective function value is very expensive task
which includes:

Training a SVM with a particular parameter setting
Testing the SVM resulting model on a validation set
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Grid Search

Except estimate methods, the mechanisms of searching for parameter sets that make

SVMs resulting model perform well is important, too. The most common and reliable

approach for model selection is exhaustive grid search method. When searching for a

good combination of parameters for C and γ, it is usual to form a two dimension uniform

grid (say p × p) of points in a pre-specified search range and find a combination (point)

that gives the least value for some estimate of generalization error. It is expensive since

it requires the trying of p × p pairs of (C, γ). Figure 3.2 is a grid search example where

p = 5.

C

γ

p=5

Figure 3.2: An exhaustive grid search example

The grid method is obviously very clear and simple, but it also has an apparent

shortcoming of time-consuming. The grid method along with estimate methods will take

a lot of time in model selection. For example, we use a grid method with 400 trying

parameter combinations and 10-fold cross-validation for a model selection procedure. This

model selection procedure takes about 4000 times of SVMs training for obtaining a good

parameter combination. Therefore many improved model selection methods have been

proposed to reduce the candidate trying parameter combinations.
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Validation Set Accuracy Surface

Chapelle et al. [8] use the gradient-based approach to implement model selection.

At first, they set the initial point, and then run the gradient decent method to search for

the extreme as the solution. In comparison with the grid method, their method presents

impressive gain in time complexity. However, Figure 3.3 shows an example of search

space, and each point in the search space represents one parameter combination of model

selection. We mesh the estimate value of each parameter combination to form the surface

figure. By an empirical observation, the surfaces are often rough. The gradient-based

methods have a great chance falling into bad local minima.
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Figure 3.3: The examples of search space of model selection

Different to gradient-based methods [8, 25], alternative model selection methods use

different parameter combinations in a pre-specified search range such as the design of

experiments approach [49] and the asymptotic behaviors of SVMs with Gaussian kernel

approach [26]. By using efficient parameter combinations, they successfully reduce the

22

65 / 76



Where Are our Tuning Parameters

Gaussian kernel:K (A,A>)ij = e−γ‖Ai−Aj‖2
2

Conventional nonlinear SVM:

max
α∈R`

1>α− 1
2α

>DK (A,A>)Dα

e>Dα = 0
0 ≤ α ≤ C1

Nonlinear SSVM:
min
a,b

C
2 ‖p(1− D(K (A,A>)Dα+ 1b, β))‖22 + 1

2(‖α‖22 + b2)
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Heuristic for Determining Parameters Search Range

The parameter in Gaussian kernel is more sensitive than
parameter C in objective function

The range of γ is determined by the closest pair of data
points in the training set such that

0.15 ≤ e−r‖u−v‖2
2 ≤ 0.999

For massive dataset, you may try other heuristics
e.g., sampling or the shortest distance to centriod

We want to scale the distance factor in the Gaussian kernel
automatically
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Heuristic for Determining Parameters Search Range(cont.)

Reduced kernel always has a larger C than full kernel since the
reduced model has been simplified

Full kernel:C Range=[1e-2, 1e+4]
Reduced kernel:C Range=[1e0, 1e+6]
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Uniform Experimental Design

The uniform design (UD) is one kind of space filling designs
that seeks its design points to be uniformly scattered on the
experimental domain

UD can be used for industrial experiments when the
underlying model is unknown or only vaguely specified

Our SVM model selection problem is in this case

Once the search domain and number of levels for each
parameter are determined the candidate set of parameter
combinations can be found by a UD table
Available at: http://www.math.hkbu.edu.hk/UniformDesign
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UD Sampling Patterns

models. In Chapter 4, the numerical results will show the contributions of our DOE

based model selection method.

3.5 The Nested Uniform Design Based Model Selec-

tion Method

Clog2

γlog2

The 13 runs UD sampling pattern

Clog2

γlog2

The 9 runs UD sampling pattern

Clog2

γlog2

The 5 runs UD sampling pattern

Figure 3.6: The UD sampling patterns

In this section, we propose the uniform design [15] based model selection method.

This model selection method is based on ideas from the nested uniform design (UD).

Figure 3.6 shows the UD sampling patterns, where N runs means that we distribute

N trying parameter points uniformly in a search space. Note that each log2C or log2γ

27

UD: Uniform Design
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Nested UD-based Method(1/2)

1st stage

- the best point
Clog2

γlog2

2nd stage

Clog2

γlog2

- the new ud point

- the duplicate point

Figure 3.7: The nested UD based model selection method (13 points in first stage and 9
points in second stage)

value is used at most once in the UD based method, and there is no point on the search

space corners. Those characteristics are very efficient in model selection problems. The

parameter point distribution resulting form the UD sampling patterns are very uniform.

Besides, the corner points on the search space usually case the over-fitting or under-fitting

problem, and we should avoid estimating the SVMs resulting model on those parameter

points.

This nested UD based method is similar to the DOE based method. We divide

the UD based method into two stages. In first stage, we use 13 runs UD sampling

pattern (see Figure 3.7) in the appropriate search space range that we proposed in above

section. In the second stage, we halve the search space range and let the best point be

the center point of the new search space. Then we use 9 runs UD sampling pattern in

the new range. The total number of parameter combinations is 21 (the duplicate points

are removed). Moreover, to deal with large sample size datasets, we combine 9 runs and
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Nested UD-based Method(2/2)

1st stage

- the best point

2nd stage

- the new ud point

- the duplicate point

Clog2

γlog2

Clog2

γlog2

Figure 3.8: The nested UD based model selection method (9 points in first stage and 5
points in second stage)

5 runs sampling patterns in the two stages, as such in Figure 3.8. The total number

of parameter combinations is reduced to 13 (the duplicate points are removed), and the

UD based method still makes the SVMs resulting model obtain a good performance.

In Chapter 4, the numerical results will show the contributions of our UD based model

selection method.

29

72 / 76



Experimental Results(1/2)

Gird* Keerthi* DOE UD1 UD2

banana 0.1235 0.1178 0.1185±0.0064 0.1128±0.0038 0.1121±0.0054

image 0.0248 0.0248 0.0239±0.0027 0.0244±0.0013 0.0246±0.0025

splice 0.0970 0.1011 0.1035±0.0038 0.1044±0.0039 0.1017±0.0065

waveform 0.1078 0.1078 0.1158±0.0073 0.1071±0.0038 0.1120±0.0044

tree 0.1132 0.1246 0.1174±0.0036 0.1157±0.0047 0.1168±0.0041

adult 0.1614 0.1614 0.1617±0.0025 0.1618±0.0032 0.1602±0.0013

web 0.0222 0.0222 0.0218±0.0011 0.0210±0.0015 0.0212±0.0004

Problem LIBSVM

DOE UD1 UD2

0.1207±0.0071 0.1219±0.0070 0.1185±0.0070

0.0289±0.0058 0.0307±0.0040 0.0279±0.0061

0.1015±0.0030 0.1005±0.0019 0.1003±0.0030

0.1048±0.0046 0.1055±0.0035 0.1087±0.0053

0.1183±0.0023 0.1171±0.0026 0.1189±0.0029

0.1604±0.0011 0.1605±0.0020 0.1611±0.0021

0.0232±0.0007 0.0236±0.0014 0.0229±0.0020

SSVM

banana

image

splice

waveform

tree

adult

web

Problem

DOE UD1 UD2

0.1203±0.0038 0.1229±0.0077 0.1239±0.0053

0.0461±0.0082 0.0437±0.0082 0.0429±0.0081

0.1342±0.0069 0.1346±0.0041 0.1360±0.0053

0.1117±0.0044 0.1138±0.0040 0.1121±0.0039

0.1186±0.0033 0.1193±0.0054 0.1178±0.0040

0.1621±0.0017 0.1614±0.0019 0.1625±0.0016

0.0266±0.0039 0.0248±0.0014 0.0258±0.0020

RSVM

banana

image

splice

waveform

tree

adult

web

Problem

Table 4.2: The average test set rate of classification problems. The Grid and Keerith
columns are the test set error from [26]. The DOE, UD1 and UD2 columns are the
average test set error ± standard deviation by 10 times repeated experiments of our
model selection methods. RSVM randomly selects 5% training set to form the reduced
set.
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Experimental Results(2/2)

Gird* Keerthi* DOE UD1 UD2

banana 0.1235 0.1178 0.1185±0.0064 0.1128±0.0038 0.1121±0.0054

image 0.0248 0.0248 0.0239±0.0027 0.0244±0.0013 0.0246±0.0025

splice 0.0970 0.1011 0.1035±0.0038 0.1044±0.0039 0.1017±0.0065

waveform 0.1078 0.1078 0.1158±0.0073 0.1071±0.0038 0.1120±0.0044

tree 0.1132 0.1246 0.1174±0.0036 0.1157±0.0047 0.1168±0.0041

adult 0.1614 0.1614 0.1617±0.0025 0.1618±0.0032 0.1602±0.0013

web 0.0222 0.0222 0.0218±0.0011 0.0210±0.0015 0.0212±0.0004

Problem LIBSVM

DOE UD1 UD2

0.1207±0.0071 0.1219±0.0070 0.1185±0.0070

0.0289±0.0058 0.0307±0.0040 0.0279±0.0061

0.1015±0.0030 0.1005±0.0019 0.1003±0.0030

0.1048±0.0046 0.1055±0.0035 0.1087±0.0053

0.1183±0.0023 0.1171±0.0026 0.1189±0.0029

0.1604±0.0011 0.1605±0.0020 0.1611±0.0021

0.0232±0.0007 0.0236±0.0014 0.0229±0.0020

SSVM

banana

image

splice

waveform

tree

adult

web

Problem

DOE UD1 UD2

0.1203±0.0038 0.1229±0.0077 0.1239±0.0053

0.0461±0.0082 0.0437±0.0082 0.0429±0.0081

0.1342±0.0069 0.1346±0.0041 0.1360±0.0053

0.1117±0.0044 0.1138±0.0040 0.1121±0.0039

0.1186±0.0033 0.1193±0.0054 0.1178±0.0040

0.1621±0.0017 0.1614±0.0019 0.1625±0.0016

0.0266±0.0039 0.0248±0.0014 0.0258±0.0020

RSVM

banana

image

splice

waveform

tree

adult

web

Problem

Table 4.2: The average test set rate of classification problems. The Grid and Keerith
columns are the test set error from [26]. The DOE, UD1 and UD2 columns are the
average test set error ± standard deviation by 10 times repeated experiments of our
model selection methods. RSVM randomly selects 5% training set to form the reduced
set.
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Conclusions

SSVM: A new formulation of support vector machines as a
smooth unconstrained minimization problem

Can be solved by a fast Newton-Armijo algorithm
No optimization (LP, QP) package is needed

RSVM: A new nonlinear method for massive datasets

Overcomes two main difficulties of nonlinear SVMs
Reduces the memory storage & computational time

Rectangular kernel: novel idea for kernel-based Algs.

Applied uniform design to SVMs model selection that can be
done automatically
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