Introduction to Support Vector Machine

Yuh-Jye Lee

National Taiwan University of Science and Technology
September 23, 2009

Binary Classification Problem

Binary Classification Problem (A Fundamental Problem in Data Mining)

- Find a decision function (classifier) to discriminate two categories data sets.
- Supervised learning in Machine Learning
- Decision Tree, Neural Network, k-NN and Support Vector Machines, etc.
- Discrimination Analysis in Statistics
- Fisher Linear Discriminator
- Successful applications:
- Marketing, Bioinformatics, Fraud detection

Binary Classification Problem

Given a training dataset

$$
\begin{gathered}
S=\left\{\left(x^{i}, y_{i}\right) \mid x^{i} \in \mathbb{R}^{n}, y_{i} \in\{-1,1\}, i=1, \ldots, \ell\right\} \\
x^{i} \in A_{+} \Leftrightarrow y_{i}=1 \& x^{i} \in A_{-} \Leftrightarrow y_{i}=-1
\end{gathered}
$$

Main Goal:

Predict the unseen class label for new data

Find a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by learning from data

$$
f(x) \geq 0 \Rightarrow x \in A_{+} \text {and } f(x)<0 \Rightarrow x \in A_{-}
$$

The simplest function is linear: $f(x)=w^{\top} x+b$

Binary Classification Problem Linearly Separable Case

Perceptron Algorithm (Primal Form) Rosenblatt, 1956

- An on-line and mistake-driven procedure Repeat: for $i=1$ to ℓ

$$
\begin{aligned}
& \text { if } y_{i}\left(\left\langle w^{k} \cdot x^{i}\right\rangle+b_{k}\right) \leq 0 \text { then } \\
& \quad w^{k+1} \leftarrow x^{k}+\eta y_{i} x^{i} \\
& b_{k+1} \leftarrow b_{k}+\eta y_{i} R^{2}
\end{aligned} \quad R=\max _{1 \leq i \leq \ell}\left\|x^{i}\right\|
$$

$$
k \leftarrow k+1
$$

end if
until no mistakes made within the for loop return: $k,\left(w^{k}, b_{k}\right)$. What is k ?

$$
\begin{aligned}
& y_{i}\left(\left\langle w^{k+1} \cdot x^{i}\right\rangle+b_{k+1}\right)>y_{i}\left(\left\langle w^{k} \cdot x^{i}\right\rangle\right)+b_{k} ? \\
& w^{k+1} \longleftarrow w^{k}+\eta y_{i} x^{i} \text { and } b_{k+1} \longleftarrow b_{k}+\eta y_{i} R^{2}
\end{aligned}
$$

$$
\begin{aligned}
y_{i}\left(\left\langle w^{k+1} \cdot x^{i}\right\rangle+b_{k+1}\right) & =y_{i}\left(\left\langle\left(w^{k}+\eta y_{i} x^{i}\right) \cdot x^{i}\right\rangle+b_{k}+\eta y_{i} R^{2}\right) \\
& =y_{i}\left(\left\langle w^{k} \cdot x^{i}\right\rangle+b_{k}\right)+y_{i}\left(\eta y_{i}\left(\left\langle x^{i} \cdot x^{i}\right\rangle+R^{2}\right)\right) \\
& =y_{i}\left(\left\langle w^{k} \cdot x^{i}\right\rangle+b_{k}\right)+\eta\left(\left\langle x^{i} \cdot x^{i}\right\rangle+R^{2}\right)
\end{aligned}
$$

$$
R=\max _{1 \leq i \leq \ell}\left\|x^{i}\right\|
$$

Perceptron Algorithm Stop in Finite Steps

Theorem(Novikoff)
Let S be a non-trivial training set, and let

$$
R=\max _{1 \leq i \leq \ell}\left\|x^{i}\right\|
$$

Suppose that there exists a vector $w_{\text {opt }}$ such that $\left\|w_{\text {opt }}\right\|=1$ and

$$
y_{i}\left(\left\langle w_{o p t} \cdot x^{i}\right\rangle+b_{o p t}\right) \text { for } 1 \leq i \leq \ell
$$

Then the number of mistakes made by the on-line perceptron algorithm on S is almost $\left(\frac{2 R}{r}\right)^{2}$.

Perceptron Algorithm (Dual Form)

$$
w=\sum_{i=1}^{\ell} \alpha_{i} y_{i} x^{i}
$$

Given a linearly separable training set S and $\alpha=0, \alpha \in \mathbb{R}^{\ell}$, $b=0, R=\max _{1 \leq i \leq \ell}\left\|x_{i}\right\|$.
Repeat: for $i=1$ to ℓ

$$
\begin{aligned}
& \text { if } \left.y_{i}\left(\sum_{j=1}^{\ell}\right) \alpha_{i} y_{i}\left\langle x^{j} \cdot x^{i}\right\rangle+b\right) \leq 0 \text { then } \\
& \qquad \alpha_{i} \leftarrow \alpha_{i}+1 ; b \leftarrow b+y_{i} R^{2} \\
& \text { end if }
\end{aligned}
$$

end for

Until no mistakes made within the for loop return: (α, b)

What We Got in the DualForm PerceptronAlgorithm?

- The number of updates equals: $\sum_{i=1}^{\ell} \alpha_{i}=\|\alpha\|_{1} \leq\left(\frac{2 R}{r}\right)^{2}$
- $\alpha_{i}>0$ implies that the training point $\left(x_{i}, y_{i}\right)$ has been misclassified in the training process at least once.
- $\alpha_{i}=0$ implies that removing the training point $\left(x_{i}, y_{i}\right)$ will not affect the final results.
- The training data only appear in the algorithm through the entries of the Gram matrix, $G \in \mathbb{R}^{\ell \times \ell}$ which is defined below:

$$
G_{i j}=\left\langle x_{i}, x_{j}\right\rangle
$$

Support Vector Machine

Binary Classification Problem Linearly Separable Case

Support Vector Machines Maximizing the Margin between Bounding Planes

Why Use Support Vector Machines? Powerful tools for Data Mining

- SVM classifier is an optimally defined surface
- SVMs have a good geometric interpretation
- SVMs can be generated very efficiently
- Can be extended from linear to nonlinear case
- Typically nonlinear in the input space
- Linear in a higher dimensional "feature space"
- Implicitly defined by a kernel function
- Have a sound theoretical foundation
- Based on Statistical Learning Theory

Why We Maximize the Margin? (Based on Statistical Learning Theory)

- The Structural Risk Minimization (SRM):
- The expected risk will be less than or equal to empirical risk (training error) + VC (error) bound
- $\|w\|_{2} \propto V C$ bound
- min VC bound $\Leftrightarrow \min \frac{1}{2}\|w\|_{2}^{2} \Leftrightarrow \max$ Margin

Summary the Notations

Let $S=\left\{\left(x^{1}, y_{1}\right),\left(x^{2}, y_{2}\right), \ldots,\left(x^{\ell}, y_{\ell}\right)\right.$ be a training dataset and represented by matrices

$$
A=\left[\begin{array}{c}
\left(x^{1}\right)^{\top} \\
\left(x^{2}\right)^{\top} \\
\vdots \\
\left(x^{\ell}\right)^{\top}
\end{array}\right] \in \mathbb{R}^{\ell \times n}, D=\left[\begin{array}{ccc}
y_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & y_{\ell}
\end{array}\right] \in \mathbb{R}^{\ell \times \ell}
$$

$A_{i} w+b \geq+1$, for $D_{i i}=+1$
$A_{i} w+b \leq-1$, for $D_{i j}=-1$, equivalent to $D(A w+1 b) \geq \mathbf{1}$, where $\mathbf{1}=[1,1, \ldots, 1]^{\top} \in \mathbb{R}^{\ell}$

Support Vector Classification (Linearly Separable Case, Primal)

The hyperplane (w, b) is determined by solving the minimization problem:

$$
\begin{aligned}
& \min _{(w, b) \in \mathbb{R}^{n+1}} \frac{1}{2}\|w\|_{2}^{2} \\
& D(A w+\mathbf{1} b) \geq \mathbf{1}
\end{aligned}
$$

It realizes the maximal margin hyperplane with geometric margin

$$
\gamma=\frac{1}{\|w\|_{2}}
$$

Support Vector Classification (Linearly Separable Case, Dual Form)

The dual problem of previous MP:

$$
\max _{\alpha \in R^{\ell}} \mathbf{1}^{\top} \alpha-\frac{1}{2} \alpha^{\top} D A A^{\top} D \alpha
$$

subject to

$$
\mathbf{1}^{\top} D \alpha=0, \alpha \geq \mathbf{0}
$$

Applying the KKT optimality conditions, we have $A^{\top} D \alpha$. But where is b ?
Don't forget

$$
\mathbf{0} \leq \alpha \perp D(A w+\mathbf{1} b)-\mathbf{1} \geq \mathbf{0}
$$

Dual Representation of SVM

(Key of Kernel Methods: $w=A^{\top} D \alpha^{*}=\sum_{i=1}^{\ell} y_{i} \alpha_{i}^{*} A_{i}^{\top}$)

The hypothesis is determined by $\left(\alpha^{*}, b^{*}\right)$

$$
\begin{aligned}
h(x) & =\operatorname{sgn}\left(\left\langle x \cdot A^{\top} D \alpha^{*}\right\rangle+b^{*}\right) \\
& =\operatorname{sgn}\left(\sum_{i=1}^{\ell} y_{i} \alpha_{i}^{*}\left\langle x^{i} \cdot x\right\rangle+b^{*}\right) \\
& =\operatorname{sgn}\left(\sum_{\alpha_{i}^{*}>0} y_{i} \alpha_{i}^{*}\left\langle x^{i} \cdot x\right\rangle+b^{*}\right)
\end{aligned}
$$

Remember: $A_{i}^{\top}=x_{i}$

Soft Margin SVM (Nonseparable Case)

- If data are not linearly separable
- Primal problem is infeasible
- Dual problem is unbounded above
- Introduce the slack variable for each training point

$$
y_{i}\left(w^{\top} x^{i}+b\right) \geq 1-\xi_{i}, \quad \xi_{i} \geq 0, \quad \forall i
$$

- The inequality system is always feasible e.g.

$$
w=\mathbf{0}, \quad b=0, \quad \xi=\mathbf{1}
$$

Robust Linear Programming Preliminary Approach to SVM

$$
\begin{array}{cc}
\min _{w, b, \xi} & \mathbf{1}^{\top} \xi \\
\text { s.t. } & D(A w+\mathbf{1} b)+\xi \geq \mathbf{1} \quad(L P) \\
& \xi \geq \mathbf{0}
\end{array}
$$

where ξ is nonnegative slack(error) vector

- The term $\mathbf{1}^{\top} \xi$, 1-norm measure of error vector, is called the training error
- For the linearly separable case, at solution of(LP): $\xi=\mathbf{0}$

Support Vector Machine Formulations (Two Different Measures of Training Error)

2-Norm Soft Margin:

$$
\begin{array}{ll}
\min _{(w, b, \xi) \in \mathbb{R}^{n+1+\ell}} & \frac{1}{2}\|w\|_{2}^{2}+\frac{C}{2}\|\xi\|_{2}^{2} \\
& D(A w+\mathbf{1} b)+\xi \geq \mathbf{1}
\end{array}
$$

1-Norm Soft Margin (Conventional SVM)

$$
\begin{array}{ll}
\min _{(w, b, \xi) \in \mathbb{R}^{n+1+\ell}} & \frac{1}{2}\|w\|_{2}^{2}+C \mathbf{1}^{\top} \xi \\
& D(A w+\mathbf{1} b)+\xi \geq \mathbf{1} \\
& \xi \geq \mathbf{0}
\end{array}
$$

Tuning Procedure How to determine C ?

The final value of parameter is one with the maximum testing set correctness!

Lagrangian Dual Problem

$\max _{\alpha, \beta} \min _{x \in \Omega}$	$L(x, \alpha, \beta)$
subject to	$\alpha \geq \mathbf{0}$
	\Uparrow
$\max _{\alpha, \beta}$	$\theta(\alpha, \beta)$
subject to	$\alpha \geq \mathbf{0}$

where $\theta(\alpha, \beta)=\inf _{x \in \Omega} L(x, \alpha, \beta)$

1-Norm Soft Margin SVM Dual Formalation

The Lagrangian for 1-norm soft margin:

$$
\begin{aligned}
\mathcal{L}(w, b, \xi, \alpha, \gamma)= & \frac{1}{2} w^{\top} w+C \mathbf{1}^{\top} \xi+ \\
& \alpha^{\top}[\mathbf{1}-D(A w+\mathbf{1} b)-\xi]-\gamma^{\top} \xi
\end{aligned}
$$

where $\alpha \geq \mathbf{0}$ \& $\gamma \geq \mathbf{0}$.
The partial derivatives with respect to primal variables equal zeros:

$$
\frac{\partial \mathcal{L}(w, b, \xi, \alpha)}{\partial w}=w-A^{\top} D \alpha=\mathbf{0}
$$

$\frac{\partial \mathcal{L}(w, b, \xi, \alpha)}{\partial b}=\mathbf{1}^{\top} D \alpha=0, \quad \frac{\partial \mathcal{L}(w, b, \xi, \alpha)}{\partial \xi}=C \mathbf{1}-\alpha-\gamma=\mathbf{0}$.

Substitute: $w=A^{\top} D \alpha, C 1^{\top} \xi=(\alpha+\gamma)^{\top} \xi$ $1^{\top} D \alpha=0$, in $L(w, b, \xi, \alpha, \gamma)$

$$
\begin{aligned}
\mathcal{L}(w, b, \xi, \alpha, \gamma)= & \frac{1}{2} w^{\top} w+C \mathbf{1}^{\top} \xi+ \\
& \alpha^{\top}[\mathbf{1}-D(A w+\mathbf{1} b)-\xi]-\gamma^{\top} \xi
\end{aligned}
$$

where $\alpha \geq \mathbf{0}$ \& $\gamma \geq \mathbf{0}$

$$
\begin{aligned}
\theta(\alpha, \gamma) & =\frac{1}{2} \alpha^{\top} D A A^{\top} D \alpha+\mathbf{1}^{\top} \alpha-\alpha^{\top} D A\left(A^{\top} D \alpha\right) \\
& =-\frac{1}{2} \alpha^{\top} D A A^{\top} D \alpha+\mathbf{1}^{\top} \alpha
\end{aligned}
$$

s.t. $\quad \mathbf{1}^{\top} D \alpha=0, \alpha-\gamma=\mathbf{C} \mathbf{1}$ and $\alpha \geq \mathbf{0} \& \gamma \geq \mathbf{0}$

Dual Maximization Problem for 1-Norm Soft Margin

Dual:

$$
\begin{gathered}
\max _{\alpha \in \mathbb{R}^{\ell}} \mathbf{1}^{\top} \alpha-\frac{1}{2} \alpha^{\top} D A A^{\top} D \alpha \\
\mathbf{1}^{\top} D \alpha=0 \\
\mathbf{0} \leq \alpha \leq \mathbf{C} \mathbf{1}
\end{gathered}
$$

- The corresponding KKT complementarity

$$
\begin{aligned}
& \mathbf{0} \leq \alpha \perp D(A w+\mathbf{1} b)+\xi-\mathbf{1} \geq \mathbf{0} \\
& \mathbf{0} \leq \xi \perp \alpha-C \mathbf{1} \leq \mathbf{0}
\end{aligned}
$$

Slack Variables for 1-Norm Soft Margin SVM $f(x)=\sum_{\left.\alpha_{i}\right\rangle} y_{i} \alpha_{i}^{*}\left\langle x^{i}, x\right\rangle+b^{*}$

- Non-zero slack can only occur when $\alpha_{i}^{*}=C$
- The contribution of outlier in the decision rule will be at most C
- The trade-off between accuracy and regularization directly controls by C
- The points for which $0<\alpha_{i}^{*}<C$ lie at the bounding planes
- This will help us to find b^{*}

Two-spiral Dataset

 (94 white Dots \& 94 Red Dots)

Learning in Feature Space (Could Simplify the Classification Task)

- Learning in a high dimensional space could degrade generalization performance
- This phenomenon is called curse of dimensionality
- By using a kernel function, that represents the inner product of training example in feature space, we never need to explicitly know the nonlinear map
- Even do not know the dimensionality of feature space
- There is no free lunch
- Deal with a huge and dense kernel matrix
- Reduced kernel can avoid this difficulty

Linear Machine in Feature Space

Let $\phi: X \longrightarrow F$ be a nonlinear map from the input space to some feature space
The classifier will be in the form(primal):

$$
f(x)=\left(\sum_{j=1}^{?} w_{j} \phi_{j}(x)\right)+b
$$

Make it in the dual form:

$$
f(x)=\left(\sum_{i=1}^{\ell} \alpha_{i} y_{i}\left\langle\phi\left(x^{i}\right) \cdot \phi(x)\right\rangle\right)+b
$$

Kernel:Represent Inner Product in Feature Space

Definition: A kernel is a function $K: X \times X \longrightarrow \mathbb{R}$ such that for all $x, z \in X$

$$
K(x, z)=\langle\phi(x) \cdot \phi(z)\rangle
$$

where $\phi: X \longrightarrow F$
The classifier will become:

$$
f(x)=\left(\sum_{i=1}^{\ell} \alpha_{i} y_{i} K\left(x^{i}, x\right)\right)+b
$$

A Simple Example of Kernel
 Polynomial Kernel of Degree 2: $K(x, z)=\langle x, z\rangle^{2}$

Let $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], z=\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right] \in \mathbb{R}^{2}$ and the nonlinear map
$\phi: \mathbb{R}^{2} \longmapsto \mathbb{R}^{3}$ defined by $\phi(x)=\left[\begin{array}{c}x_{1}^{2} \\ x_{2}^{2} \\ \sqrt{2} x_{1} x_{2}\end{array}\right]$.
Then $\langle\phi(x), \phi(z)\rangle=\langle x, z\rangle^{2}=K(x, z)$

- There are many other nonlinear maps, $\psi(x)$, that satisfy the relation: $\langle\psi(x), \psi(z)\rangle=\langle x, z\rangle^{2}=K(x, z)$

Power of the Kernel Technique

Consider a nonlinear map $\phi: \mathbb{R}^{n} \longmapsto \mathbb{R}^{p}$ that consists of distinct features of all the monomials of degree d.

Then $p=\binom{n+d-1}{d}$.
$x_{1}^{3} x_{2}^{1} x_{3}^{4} x_{4}^{4} \Longrightarrow \times \circ \circ \circ \times \circ \times \circ \circ \circ \circ \times \circ \circ \circ \circ$
For example: $\mathrm{n}=11, \mathrm{~d}=10, \mathrm{p}=92378$

- Is it necessary? We only need to know $\langle\phi(x), \phi(z)\rangle$!
- This can be achieved $K(x, z)=\langle x, z\rangle^{d}$

Kernel Technique Based on Mercer's Condition(1909)

- The value of kernel function represents the inner product of two training points in feature space
- Kernel function merge two steps
(1) map input data from input space to feature space (might be infinite dim.)
(2) do inner product in the feature space

Example of Kernel $K(A, B): \mathbb{R}^{\ell \times n} \times \mathbb{R}^{n \times \tilde{\ell}} \longmapsto R^{\ell \times \tilde{\ell}}$

$A \in \mathbb{R}^{\ell \times n}, a \in \mathbb{R}^{\ell}, \mu \in \mathbb{R}, d$ is an integer:

- Polynomial Kernel:
- $\left(A A^{\top}+\mu a a^{\top}\right)_{\bullet}^{d}\left(\right.$ Linear Kernel $\left.A A^{\top}: \mu=0, d=1\right)$
- Gaussian (Radial Basis) Kernel:
- $K\left(A, A^{\top}\right)_{i j}=e^{-\mu\left\|A_{i}-A_{j}\right\|_{2}^{2}}, \quad i, j=1, \ldots, m$
- The ij-entry of $K\left(A, A^{\top}\right)$ represents the "similarity" of data points A_{i} and A_{j}

Nonlinear Support Vector Machine (Applying the Kernel Trick)

1-Norm Soft Margin Linear SVM:

$$
\max _{\alpha \in \mathbb{R}^{\ell}} \mathbf{1}^{\top} \alpha-\frac{1}{2} \alpha^{\top} D A A^{\top} D \alpha \text { s.t. } \mathbf{1}^{\top} D \alpha=0, \quad \mathbf{0} \leq \alpha \leq C \mathbf{1}
$$

- Applying the kernel trick and running linear SVM in the feature space without knowing the nonlinear mapping 1-Norm Soft Margin Nonlinear SVM:

$$
\begin{aligned}
& \max _{\alpha \in \mathbb{R}^{\ell}} \mathbf{1}^{\top} \alpha-\frac{1}{2} \alpha^{\top} D K\left(A, A^{\top}\right) D \alpha \\
& \text { s.t. } \mathbf{1}^{\top} D \alpha=0, \quad \mathbf{0} \leq \alpha \leq C \mathbf{1}
\end{aligned}
$$

- All you need to do is replacing $A A^{\top}$ by $K\left(A, A^{\top}\right)$

1-Norm SVM (Different Measure of Margin)

1-Norm SVN:

$$
\begin{array}{cc}
\min _{(w, b, \xi) \in \mathbb{R}^{n+1+\ell}} & \|w\|_{1}+C \mathbf{1}^{\top} \xi \\
D(A w+\mathbf{1} b)+\xi \geq \mathbf{1} \\
\xi \geq \mathbf{0}
\end{array}
$$

Equivalent to:

$$
\begin{array}{cc}
\min _{(s, w, b, \xi) \in \mathbb{R}^{2 n+1+\ell}} & \mathbf{1 s}+C 1^{\top} \xi \\
D(A w+\mathbf{1} b)+\xi \geq \mathbf{1} \\
-s \leq w \leq s \\
& \xi \geq \mathbf{0}
\end{array}
$$

Good for feature selection and similar to the LASSO

Smooth Support Vector Machine

Support Vector Machine Formulations

Two Different Measures of Training Error

2-Norm Soft Margin (Primal form):

$$
\begin{array}{cc}
\min _{(w, b, \xi) \in R^{n+1+\ell}} & \frac{1}{2}\|w\|_{2}^{2}+\frac{C}{2}\|\xi\|_{2}^{2} \\
& D(A w+\mathbf{1} b)+\xi \geq \mathbf{1}
\end{array}
$$

1-Norm Soft Margin (Primal form):

$$
\begin{array}{cc}
\min _{(w, b, \xi) \in R^{n+1+\ell}} & \frac{1}{2}\|w\|_{2}^{2}+C \mathbf{1}^{\top} \xi \\
& D(A w+\mathbf{1} b)+\xi \geq \mathbf{1}, \quad \xi \geq \mathbf{0}
\end{array}
$$

- Margin is maximized by minimizing reciprocal of margin.

SVM as an Unconstrained Minimization Problem

$$
\begin{array}{cc}
\min _{w, b} & \frac{c}{2}\|\xi\|_{2}^{2}+\frac{1}{2}\left(\|w\|_{2}^{2}+b^{2}\right) \\
\text { s.t. } & D(A w+1 b)+\xi \geq \mathbf{1}
\end{array}
$$

At the solution of (QP) : $\xi=(\mathbf{1}-D(A w+\mathbf{1} b))_{+}$where $(\cdot)_{+}=\max \{\cdot, 0\}$.

Hence (QP) is equivalent to the nonsmooth SVM:

$$
\min _{w, b} \frac{C}{2}\left\|(\mathbf{1}-D(A w+\mathbf{1} b))_{+}\right\|_{2}^{2}+\frac{1}{2}\left(\|w\|_{2}^{2}+b^{2}\right)
$$

- Change (QP) into an unconstrained MP
- Reduce ($n+1+\ell$) variables to ($n+1$) variables

Smooth the Plus Function: Integrate $\left(\frac{1}{1+\epsilon^{-\beta x}}\right)$ $p(x, \beta):=x+\frac{1}{\beta} \log \left(1+\epsilon^{-\beta x}\right)$

The Step Function $(x)_{*}$ and the Sigmoid-Function $\frac{1}{1+\varepsilon^{-\alpha x}}$

The Plus Function $(x)_{+}$and the p-Function $p(x, 5)$

SSVM: Smooth Support Vector Machine

- Replacing the plus function $(\cdot)_{+}$in the nonsmooth SVM by the smooth $p(\cdot, \beta)$, gives our SSVM:

$$
\min _{(w, b) \in \mathbb{R}^{n+1}} \frac{C}{2}\|p((\mathbf{1}-D(A w+\mathbf{1} b)), \beta)\|_{2}^{2}+\frac{1}{2}\left(\|w\|_{2}^{2}+b^{2}\right)
$$

- The solution of SSVM converges to the solution of nonsmooth SVM as β goes to infinity.

Newton-Armijo Algorithm

$\Phi_{\beta}(w, b)=\frac{C}{2}\|p((1-D(A w+1 b)), \beta)\|_{2}^{2}+\frac{1}{2}\left(\|w\|_{2}^{2}+b^{2}\right)$
Start with any $\left(w^{0}, b_{0}\right) \in \mathbb{R}^{n+1}$. Having $\left(w^{i}, b_{i}\right)$, stop if $\nabla \Phi_{\beta}\left(w^{i}, b_{i}\right)=0$, else :
(1) Newton Direction:

$$
\nabla^{2} \Phi_{\beta}\left(w^{i}, b_{i}\right) d^{i}=-\nabla \Phi_{\beta}\left(w^{i}, b_{i}\right)^{\top}
$$

(2) Armijo Stepsize:

$$
\begin{gathered}
\left(w^{i+1}, b_{i+1}\right)=\left(w^{i}, b_{i}\right)+\lambda_{i} d^{i} \\
\lambda_{i} \in\left\{1, \frac{1}{2}, \frac{1}{4}, \ldots\right\}
\end{gathered}
$$

such that Armijos rule is satisfied

- globally and quadratically converge to unique solution in a finite number of steps

Newton-Armijo Method: Quadratic Approximation of SSVM

- The sequence $\left\{\left(w^{i}, b_{i}\right)\right\}$ generated by solving a quadratic approximation of SSVM, converges to the unique solution $\left(w^{*}, b^{*}\right)$ of SSVM at a quadratic rate.
- Converges in 6 to 8 iterations
- At each iteration we solve a linear system of:
- $n+1$ equations in $n+1$ variables
- Complexity depends on dimension of input space
- It might be needed to select a stepsize

Nonlinear Smooth Support Vector Machine

The Illustration of Nonlinear SVM

Nonlinear SSVM Motivation

- Linear SVM: (Linear separator: $x^{\top} w+b=0$)

$$
\begin{array}{cl}
\min _{\xi \geq 0, w, b} & \frac{c}{2}\|\xi\|_{2}^{2}+\frac{1}{2}\left(\|w\|_{2}^{2}+b^{2}\right) \tag{QP}\\
\text { s.t. } & D(A w+\mathbf{1} b)+\xi \geqslant \mathbf{1}
\end{array}
$$

By QP "duality", $w=A^{\top} D \alpha$ Maximizing the margin in the "dual space" gives:

$$
\begin{array}{cc}
\min _{\xi \geq 0, \alpha, b} & \frac{C}{2}\|\xi\|_{2}^{2}+\frac{1}{2}\left(\|\alpha\|_{2}^{2}+b^{2}\right) \\
\text { s.t. } & D\left(A A^{\top} D \alpha+\mathbf{1} b\right)+\xi \geqslant \mathbf{1}
\end{array}
$$

- Dual SSVM with separator: $x^{\top} A^{\top} D \alpha+b=0$

$$
\min _{\alpha, b} \frac{C}{2}\left\|p\left(\mathbf{1}-D\left(A A^{\top} D \alpha+\mathbf{1} b\right), \beta\right)\right\|_{2}^{2}+\frac{1}{2}\left(\|\alpha\|_{2}^{2}+b^{2}\right)
$$

Kernel Trick

- We can use the value of kernel function to represent the inner product of two training points in feature space as follows:

$$
K(\mathbf{x}, \mathbf{z})=<\phi(\mathbf{x}), \phi(\mathbf{z})>.
$$

- The most popular kernel function is the Gaussian kernel

$$
K(\mathbf{x}, \mathbf{z})=e^{-\gamma\|\mathbf{x}-\mathbf{z}\|_{2}^{2}} .
$$

- The kernel matrix $K\left(A, A^{\top}\right)_{n \times n}$ represents the inner product of all points in the feature space where $K\left(A, A^{\top}\right)_{i j}=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$.
- Replace $A A^{\top}$ by a nonlinear kernel $K\left(A, A^{\top}\right)$ without defining a explicit feature map ϕ

Nonlinear Smooth SVM Nonlinear Classifier: $K\left(x^{\top}, A^{\top}\right) D \alpha+b=0$

- Replace $A A^{\top}$ by a nonlinear kernel $K\left(A, A^{\top}\right)$:

$$
\min _{\alpha, b} \frac{C}{2} \| p\left(\mathbf{1}-D\left(K\left(A, A^{\top}\right) D \alpha+\mathbf{1} b, \beta\right) \|_{2}^{2}+\frac{1}{2}\left(\|\alpha\|_{2}^{2}+b^{2}\right)\right.
$$

- Use Newton-Armijo algorithm to solve the problem
- Each iteration solves $\ell+1$ linear equations in $\ell+1$ variables
- Nonlinear classifier depends on the data points with nonzero coefficients :

$$
K\left(x^{\top}, A^{\top}\right) D \alpha+b=\sum_{\alpha_{j}>0} \alpha_{j} y_{j} K\left(A_{j}, x\right)+b=0
$$

Reduced Support Vector Machine

Nonlinear SVM: A Full Model $f(x)=\sum_{i=1}^{\ell} \alpha_{i} k\left(x, A_{i}\right)+b$

- Nonlinear SVM uses a full representation for a classifier or regression function:
- As many parameters α_{i} as the data points
- Nonlinear SVM function is a linear combination of basis functions, $\beta=\{1\} \cup\left\{k\left(\cdot, x^{i}\right)\right\}_{i=1}^{\ell}$
- β is an overcomplete dictionary of functions when is large or approaching infinity
- Fitting data to an overcomplete full model may
- Increase computational difficulties model complexity
- Need more CPU time and memory space
- Be in danger of overfitting

Reduced SVM: A Compressed Model

It's desirable to cut down the model complexity

- Reduced SVM randomly selects a small subset \bar{S} to generate the basis functions $\overline{\mathcal{B}}$:

$$
\bar{S}=\left\{\left(\bar{x}^{i}, \bar{y}_{i}\right) \mid i=1, \ldots, \bar{\ell}\right\} \subseteq S, \overline{\mathcal{B}}=\{1\} \cup\left\{k\left(\cdot, \bar{x}^{i}\right)\right\}_{i=1}^{\bar{\ell}}
$$

- RSVM classifier is in the form $f(x)=\sum_{i=1}^{\bar{\ell}} \bar{u}_{i} k\left(x, \bar{x}^{i}\right)+b$
- The parameters are determined by fitting entire data

$$
\begin{array}{cl}
\min _{\bar{u}, b, \xi \geqslant 0} & C \sum_{j=1}^{\ell} \xi_{j}+\frac{1}{2}\left(\|\bar{u}\|_{2}^{2}+b^{2}\right) \\
\text { s.t. } & D\left(K\left(A, \bar{A}^{\top}\right) \bar{u}+\mathbf{1} b\right)+\xi \geqslant \mathbf{1}
\end{array}
$$

Nonlinear SVM vs. RSVM

$K\left(A, A^{\top}\right) \in \mathbb{R}^{\ell \times \ell}$ vs. $K\left(A, \bar{A}^{\top}\right) \in \mathbb{R}^{\ell \times \bar{\ell}}$

Nonlinear SVM
$\min _{\alpha, b, \xi \geqslant 0} C \sum_{j=1}^{\ell} \xi_{j}+\frac{1}{2}\left(\|\alpha\|_{2}^{2}+b^{2}\right) \min _{\bar{u}, b, \xi \geqslant 0} C \sum_{j=1}^{\ell} \xi_{j}+\frac{1}{2}\left(\|\bar{u}\|_{2}^{2}+b^{2}\right)$
$D\left(K\left(A, A^{\top}\right) \alpha+\mathbf{1} b\right)+\xi \geqslant \mathbf{1}$ where $K\left(A, A^{\top}\right)_{i j}=k\left(x^{i}, x^{j}\right)$

RSVM
$D\left(K\left(A, \bar{A}^{\top}\right) \bar{u}+\mathbf{1} b\right)+\xi \geqslant 1$
where $K\left(A, \bar{A}^{\top}\right)_{i j}=k\left(x^{i}, \bar{x}^{j}\right)$

A Nonlinear Kernel Application

Checkerboard Training Set: 1000 Points in Separate 486 Asterisks from 514 Dots

Conventional SVM Result on Checkerboard

 Using 50 Randomly Selected Points Out of 1000 $K\left(\bar{A}, \bar{A}^{\top}\right) \in \mathbb{R}^{50 \times 50}$

RSVM Result on Checkerboard Using SAME 50 Random Points Out of 1000 $K\left(A, \bar{A}^{\top}\right) \in \mathbb{R}^{1000 \times 50}$

Merits of RSVM Compressed Model vs. Full Model

- Computation point of view:
- Memory usage: Nonlinear SVM $\sim O\left(\ell^{2}\right)$ Reduced SVM $\sim O(\ell \times \bar{\ell})$
- Time complexity: Nonlinear SVM $\sim O\left(\ell^{3}\right)$

Reduced SVM $\sim O\left(\bar{\ell}^{3}\right)$

- Model complexity point of view:
- Compressed model is much simpler than full one
- This may reduced the risk of overfitting
- Successfully applied to other kernel based algorithms
- SVR, KFDA and Kernel canonical correction analysis

Automatic Model Selection via Uniform Design

Model Selection for SVMs

- Choosing a good parameter setting for a better generalization performance of SVMs is the so called model selection problem
- It will be desirable to have an effective and automatic model selection scheme to make SVMs practical for real applications
- In particular for the people who are not familiar with parameters tuning procedure in SVMs
- Focus on selecting the combinations of regularization parameter C and width parameter γ in the Gaussian kernel

Searching the Optimal Combination of Two Parameters

- Model selection can be treated as an optimization problem:
- The objective function is only vaguely specified
- It has many local maxima and minima
- Evaluating the objective function value is very expensive task which includes:
- Training a SVM with a particular parameter setting
- Testing the SVM resulting model on a validation set

Grid Search

Validation Set Accuracy Surface

banana

splice

Where Are our Tuning Parameters

- Gaussian kernel: $K\left(A, A^{\top}\right)_{i j}=e^{-\gamma\left\|A_{i}-A_{j}\right\|_{2}^{2}}$
- Conventional nonlinear SVM:

$$
\begin{gathered}
\max _{\alpha \in \mathbb{R}^{\ell}} \mathbf{1}^{\top} \alpha-\frac{1}{2} \alpha^{\top} D K\left(A, A^{\top}\right) D \alpha \\
e^{\top} D \alpha=0 \\
\mathbf{0} \leq \alpha \leq C \mathbf{1}
\end{gathered}
$$

- Nonlinear SSVM:
$\min _{a, b} \frac{C}{2}\left\|p\left(\mathbf{1}-D\left(K\left(A, A^{\top}\right) D \alpha+\mathbf{1} b, \beta\right)\right)\right\|_{2}^{2}+\frac{1}{2}\left(\|\alpha\|_{2}^{2}+b^{2}\right)$

Heuristic for Determining Parameters Search Range

- The parameter in Gaussian kernel is more sensitive than parameter C in objective function
- The range of γ is determined by the closest pair of data points in the training set such that

$$
0.15 \leq e^{-r\|u-v\|_{2}^{2}} \leq 0.999
$$

- For massive dataset, you may try other heuristics e.g., sampling or the shortest distance to centriod
- We want to scale the distance factor in the Gaussian kernel automatically

Heuristic for Determining Parameters Search Range(cont.)

- Reduced kernel always has a larger C than full kernel since the reduced model has been simplified
- Full kernel:C_Range=[1e-2, 1e+4]
- Reduced kernel:C_Range=[1e0, 1e+6]

Uniform Experimental Design

- The uniform design (UD) is one kind of space filling designs that seeks its design points to be uniformly scattered on the experimental domain
- UD can be used for industrial experiments when the underlying model is unknown or only vaguely specified
- Our SVM model selection problem is in this case
- Once the search domain and number of levels for each parameter are determined the candidate set of parameter combinations can be found by a UD table
Available at: http://www.math.hkbu.edu.hk/UniformDesign

UD Sampling Patterns

UD: Uniform Design

Nested UD-based Method(1/2)

Nested UD-based Method(2/2)

Experimental Results(1/2)

Problem	SSVM		
	DOE	UD1	UD2
banana	0.1207 ± 0.0071	0.1219 ± 0.0070	0.1185 ± 0.0070
image	0.0289 ± 0.0058	0.0307 ± 0.0040	0.0279 ± 0.0061
splice	0.1015 ± 0.0030	0.1005 ± 0.0019	0.1003 ± 0.0030
waveform	0.1048 ± 0.0046	0.1055 ± 0.0035	0.1087 ± 0.0053
tree	0.1183 ± 0.0023	0.1171 ± 0.0026	0.1189 ± 0.0029
adult	0.1604 ± 0.0011	0.1605 ± 0.0020	0.1611 ± 0.0021
web	0.0232 ± 0.0007	0.0236 ± 0.0014	0.0229 ± 0.0020

Experimental Results(2/2)

Problem	RSVM		
	DOE	UD1	UD2
banana	0.1203 ± 0.0038	0.1229 ± 0.0077	0.1239 ± 0.0053
image	0.0461 ± 0.0082	0.0437 ± 0.0082	0.0429 ± 0.0081
splice	0.1342 ± 0.0069	0.1346 ± 0.0041	0.1360 ± 0.0053
waveform	0.1117 ± 0.0044	0.1138 ± 0.0040	0.1121 ± 0.0039
tree	0.1186 ± 0.0033	0.1193 ± 0.0054	0.1178 ± 0.0040
adult	0.1621 ± 0.0017	0.1614 ± 0.0019	0.1625 ± 0.0016
web	0.0266 ± 0.0039	0.0248 ± 0.0014	0.0258 ± 0.0020

Conclusions

- SSVM: A new formulation of support vector machines as a smooth unconstrained minimization problem
- Can be solved by a fast Newton-Armijo algorithm
- No optimization (LP, QP) package is needed
- RSVM: A new nonlinear method for massive datasets
- Overcomes two main difficulties of nonlinear SVMs
- Reduces the memory storage \& computational time
- Rectangular kernel: novel idea for kernel-based Algs.
- Applied uniform design to SVMs model selection that can be done automatically

Reference

围 Yuh－Jye Lee and O．L．Mangasarian．＂SSVM：A Smooth Support Vector Machine for Classification＂，Computational Optimization and Applications，20，（2001）5－22．
围 Yuh－Jye Lee and Su－Yun Huang．＂Reduced Support Vector Machines：A Statistical Theory＂，IEEE Transactions on Neural Networks，Vol．18，No．1（2007），1－13．
目 Chien－Ming Huang，Yuh－Jye Lee，Dennis K．J．Lin and Su－Yun Huang．＂Model Selection for Support Vector Machines via Uniform Design＂，A special issue on Machine Learning and Robust Data Mining of Computational Statistics and Data Analysis．Vol．52，（2007），335－346．

