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Machine Learning vs. Optimization

Supervised Learning Problems

Given a training set S = {(x1, y1), (x2, y2), . . . , (xm, ym)}.
We would like to construct a hypothesis (or classifier), h(x)
that can correctly predict the unseen label y given a new
instance x

If h(x) 6= y then we get some loss or penalty
For example: `(h(x), y) = 1

2 |h(x)− y |
Key Assumption: training instances are drawn from an
unknown but fixed probability distribution P(x, y)
independently.
Two supervised learning examples:

If y is drawn from a finite set it will be a classification
problem.
If y is a real number it becomes a regression problem
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Machine Learning vs. Optimization

A Supervised Learning Example: Data Fitting

Suppose we want to fit the data

(x1, y1), (x2, y2), . . . , (xm, ym)

with a straight line y = w0 + w1x .
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Machine Learning vs. Optimization

Least Squares Problem
Regression in Supervised Learning

Given a linear system, Aw = y , A ∈ Rm×n with m > n:
If linear system has no solution, an approximated solution
can be obtained by solving the following minimization
problem.

min
w∈Rn

r>r = min
w∈Rn

‖r‖22 = min
w∈Rn

m∑
i=1

(yi − Aiw)2, (1)

where r = y − Aw ∈ Rm is the residual.
You can fit them with `1 loss function

min
w∈Rn

‖r‖1 = min
w∈Rn

m∑
i=1

|yi − Aiw | (2)
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Machine Learning vs. Optimization

Binary Classification Problem

Given a training set

S = {(xj , yj )|xj ∈ Rd , yj ∈ {−1,1}, j = 1, . . . ,m}

xj ∈ P ⇔ yj = 1 & xj ∈ N ⇔ yj = −1
Main Goal:

Predict the unseen class label for new data

Find a function f : Rd → R by learning from data

f (x) ≥ 0⇒ x ∈ P and f (x) < 0⇒ x ∈ N

h(x) = sgn(f (x))

The simplest function is linear:

f (x) = 〈w,x〉+ b =
d∑

i=1

wixi + b
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Machine Learning vs. Optimization

Expected Risk vs. Empirical Risk

Assumption: training instances are drawn from an unknown but
fixed probability distribution P(x, y) independently.

Ideally, we would like to have the optimal rule h∗ that minimizes
the Expected Risk: E(h) =

∫
`(h(x), y)dP(x, y) among all

functions

Unfortunately, we can not do it. P(x, y) is unknown and we have
to restrict ourselves in a certain hypothesis space, H

How about compute h∗m ∈ H that minimizes the Empirical Risk:

Em(h) =
1
m

∑
j

`(h(xj ), yj )

Only minimizing the empirical risk will be in danger of overfitting
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Machine Learning vs. Optimization

Approximation Optimization Approach

Most of learning algorithms can be formulated as an
optimization problem
The objective function consists of two parts: Em(h)(bias)+
controls on VC-error bound (variance)
Controlling the VC-error bound will avoid the overfitting risk
It can be achieved via adding the regularization term into
the objective function
Note that: We have made lots of approximations when
formulate a learning task as an optimization problem

Why bother to find the optimal solution for the problem?
One could stop the optimization iteration before its
convergence
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Machine Learning vs. Optimization

Gradient Descent: Batch Learning

For an optimization problem

min f (w) = min r(w) +
1
m

m∑
j=1

`(w; (xj , yj))

GD tries to find a direction and the learning rate decreasing the
objective function value.

wt+1 = wt + η(−∇f (wt))

where η is the learning rate, −∇f (wt) is the steepest descent direction,

∇f (wt) = ∇r(wt) +
1
m

m∑
i=1

∇`(wt ; (xi , yi))

When m is large, computing
m∑

j=1
∇`(wt ; (xj , yj)) may cost much time.
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Machine Learning vs. Optimization

Gradient Descent is Bad if Started with a Bad Initial

Only utilizes the First Order Information
Only has a linear convergent rate for a simple quadratic
function
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Machine Learning vs. Optimization

Stochastic Gradient Descent: Online Learning

In GD, we compute the gradient using the entire training set.

In stochastic gradient descent(SGD), we use

∇`(wt ; (xt , yt )) instead of
1
m

m∑
j=1

∇`(wt ; (xj , yj ))

So the descent direction of f (wt ) and wt+1

dt = −∇r(wt )−∇`(wt ; (xt , yt )), wt+1 = wt + ηdt

SGD computes the descent direction using only one instance.

In experiment, SGD is significantly faster than GD when m is
large.
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Machine Learning vs. Optimization

People of ACM: David Blei (Sept. 9, 2014)

The recipient of the 2013 ACM- Infosys Foundation Award in the Computing
Sciences, he is joining Columbia University this fall as a Professor of
Statistics and Computer Science, and will become a member of Columbia’s
Institute for Data Sciences and Engineering.

[Q]: What is the most important recent innovation in machine learning?

[A]: One of the main recent innovations in ML research has been that we (the
ML community) can now scale up our algorithms to massive data, and I think
that this has fueled the modern renaissance of ML ideas in industry. The
main idea is called stochastic optimization, which is an adaptation of an old
algorithm invented by statisticians in the 1950s.
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Machine Learning vs. Optimization

People of ACM: David Blei (Sept. 9, 2014)

[Q]: What is the most important recent innovation in machine learning?

[Continuous]: In short, many machine learning problems can be boiled
down to trying to find parameters that maximize (or minimize) a function. A
common way to do this is "gradient ascent," iteratively following the steepest
direction to climb a function to its top. This technique requires repeatedly
calculating the steepest direction, and the problem is that this calculation can
be expensive. Stochastic optimization lets us use cheaper approximate
calculations. It has transformed modern machine learning.
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Machine Learning vs. Optimization

Large-Scale (Big Data) Problems

Two definitions of large-scale problems,

It consists of problems where the main computational
constraint is the amount of time available, rather than the
number of instances [Bottou, 2008].
Training set may not be stored in modern computer’s
memory [Langford, 2008].

We are in a need of learning algorithms that scale linearly with
the size of datasets

The performance of the algorithms should be better than
processing a random subset of the data via conventional
learning algorithms
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Online Learning Algorithm (Linear)

Online Learning

Definition of online learning

Given a set of new training data,

Online learner can update its model without reading old data
while improving its performance.

In contrast, off-line learner must combine old and new data and
start the learning all over again, otherwise the performance will
suffer.

Online is considered as a solution of large learning tasks

Usually require several passes (or epochs) through the training
instances

Need to keep all instances unless we only run the algorithm one
single pass
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Online Learning Algorithm (Linear)

Perceptron Algorithm

Perceptron Algorithm [Rosenblatt, 1956]

An online learning algorithm and a mistake-driven procedure

The current classifier is updated whenever the new arriving instance is
misclassified

Initiation: k = 0 , R = max
1≤j≤m

‖xj‖2

repeat
for t = 1 : m

if yt(〈wk , xt〉+ bk ) ≤ 0
wk+1 = wk + ηytxt

bk+1 = bk + ηytR2

k = k + 1
end

end
until no mistake made within the for-loop

k is number of mistakes. η > 0 is the learning rate.
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Online Learning Algorithm (Linear)

Perceptron Algorithm

Perceptron Algorithm [Rosenblatt, 1956]

The Perceptron is considered as a SGD method. The underlying
optimization problem of the algorithm

min
(w,b)∈Rd+1

m∑
j=1

(−yj (〈w,xj〉+ b))+

In the linearly separable case, the Perceptron alg. will be
terminated in finite steps no matter what learning rate is chosen

In the nonseparable case, how to decide the appropriate
learning rate that will make the least mistake is very difficult

Learning rate, η, can be a nonnegative number. More general
case, it can be a positive definite matrix
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Online Learning Algorithm (Linear)

Passive and Aggressive (PA) Algorithm

Key Idea of PA Algorithm, K. Crammer, et al.,2005

The PA algorithm suggests that the new classifier should
not only classify the new arriving data correctly but also as
close to the current classifier as possible
It can be formulated the problem as follows:

wt+1 ∈ arg min
w∈Rd

1
2
‖w−wt‖22 (3)

s.t. `(w; (xt , yt )) = 0

where `(w; (xt , yt )) is a hinge loss function
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Online Learning Algorithm (Linear)

Passive and Aggressive (PA) Algorithm

Simplify the PA Algorithm

We can simplify Eq.(3) as follows:

wt+1 ∈ arg min
w∈Rd

1
2
‖w‖22 − 〈w,wt〉 (4)

s.t. `(w; (xt , yt )) = 0

In the Eq.(4), the PA algorithm implicitly minimizes the
regularization term, 1

2‖w‖
2
2

Minimizing −〈w,wt〉 is also expressed that the new
updated classifier must be similar to the current classifier
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Online Learning Algorithm (Linear)

Passive and Aggressive (PA) Algorithm

PA-1 and PA-2

Based on the concept of the soft-margin classifier, the
non-negative slack variable ξ was introduced into the PA
algorithm in two different ways

Linear scale with ξ (called PA-1)

wt+1 ∈ arg min
w∈Rd

1
2
‖w−wt‖2

2 + Cξ

s.t. `(w; (xt , yt )) ≤ ξ and ξ ≥ 0

Square scale with ξ (called PA-2)

wt+1 ∈ arg min
w∈Rd

1
2
‖w−wt‖2

2 + Cξ2

s.t. `(w; (xt , yt )) ≤ ξ
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Online Learning Algorithm (Linear)

Passive and Aggressive (PA) Algorithm

PA Algorithm Closed Form Updating

It seems that we have to solve an optimization problem for
each instance. Fortunately, PA, PA-1 and PA-2 come with
the closed form of updating schemes
They share the same closed form wt+1 = wt + τtytxt

where τt > 0 is defined as

τt =


`(wt ; (xt ,yt ))

‖xt‖2
2

(PA)

min{C, `(w
t ; (xt ,yt ))

‖xt‖2
2
} (PA-1)

`(wt ; (xt ,yt ))

‖xt‖2
2+

1
2C

(PA-2)

It replaced the fixed learning rate such as Perceptron
algorithm with the dynamic learning rate depending on the
current instance
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Online Learning Algorithm (Linear)

PA Algorithm with a Proximal Classifier

Motivation for a Proximal Classifier

In online learning framework, we do not keep the previous
instances in the memory
A lack of memory for previous instances might hurt the
learning efficiency
The previous instances which have been classified
correctly may be misclassified again
We keep some simple statistical information (mean and
variance) to summarize the previous instances
Have to take the cost into account, fixed and small size
memory and linear CPU time
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Online Learning Algorithm (Linear)

PA Algorithm with a Proximal Classifier

Illustrations of Simple Proximal Models

If the dataset is easy to separate, the means difference
suggests a good proximal classifier (left figure)
For the more complicated dataset, the performance of the
LDA direction is better (right figure)
The proximal classifier would provide a good suggestion
for our classifier updating
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Online Learning Algorithm (Linear)

PA Algorithm with a Proximal Classifier

Proximal Classifier: Quasi-LDA

However, the cost of computing the LDA is expensive when
the input space is in the high dimensional space
We proposed the quasi-LDA direction as our proximal
classifier

(wt
p)i =

(mt
+)i−(mt

−)i

(st
+)i+(st

−)i
, i = 1,2, . . . ,d

where

wt
p : the proximal classifier on round t

mt
+/− : mean vector of Pos./Neg. class on round t

st
+/− : variance vector of Pos./Neg. class on round t

It is very cheap both in CPU time and in memory usage
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Online Learning Algorithm (Linear)

PA Algorithm with a Proximal Classifier

The Details of Proximal Classifier
Small Trick: Var(X ) = E((X − E(X ))2) = E(X 2)− (E(X ))2

The details about the statistical information we maintained

P t = {j | yj ∈ positive , j = 1, 2, . . . , t}
N t = {j | yj ∈ negative , j = 1, 2, . . . , t}

(mt
+)i = 1

|Pt |
∑

j∈P t
(xj)i i = 1, 2, . . . , d

(mt
−)i = 1

|N t |
∑

j∈N t
(xj)i i = 1, 2, . . . , d

(st
+)i = 1

|Pt |−1

∑
j∈Pt

(xj)2
i −

|Pt |
|Pt |−1 (m

t
+)

2
i i = 1, 2, . . . , d

(st
−)i = 1

|N t |−1

∑
j∈N t

(xj)2
i −

|N t |
|N t |−1 (m

t
−)

2
i i = 1, 2, . . . , d

All we need are (mt
+)i , (mt

−)i ,
∑

j∈P t
(xj)2

i and
∑

j∈N t
(xj)2

i for each attribute in

online fashion
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Online Learning Algorithm (Linear)

PA Algorithm with a Proximal Classifier

PA Algorithm with a Proximal Model

How to combine the PA algorithm with the proximal classifier?

Remember, in the PA algorithm, 〈w,wt〉 is expressed as the
similarity between w and wt

Therefore, we can formulate our idea by adding −γ〈w,wt
p〉 into

the Eq.(4), called PAm:

wt+1 ∈ arg min
w∈Rd

1
2
‖w‖2

2 − 〈w,wt〉 − γ〈w,wt
p〉

s.t. `(w; (xt , yt )) = 0

Minimizing −〈w,wt〉 − γ〈w,wt
p〉 is the way to keep the new

classifier w to be close to wt and wt
p

−γ〈w,wt
p〉 also can be introduced into the PA-1 and PA-2, called

PAm-1 and PAm-2, respectively
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Online Learning Algorithm (Linear)

PA Algorithm with a Proximal Classifier

Closed Form Updating Rule of PAm Algorithm

We derive the closed form updating rules for PAm, PAm-1 and
PAm-2 as follows, they also shared the same closed form

wt+1 = wt + γwt
p + αtytxt

where αt > 0 is defined as

αt =



`(wt ;(xt ,yt ))−γyt 〈wt
p,xt 〉

‖xt‖2
2

(PAm)

min{C, `(w
t ;(xt ,yt ))−γyt 〈wt

p,xt 〉
‖xt‖2

2
} (PAm-1)

`(wt ;(xt ,yt ))−γyt 〈wt
p,xt 〉

‖xt‖2
2+

1
2C

(PAm-2)

Yuh-Jye Lee Joint work with Y.-C. Tseng and I.-F. Chen Online Nonlinear SVM for Large-Scale Classification



Online Nonlinear SVM for Large-Scale Classification

Online Learning Algorithm (Linear)

PA Algorithm with a Proximal Classifier

Convergence Behavior: PA vs. PAm

Run 10 epochs with the same input order for each methods
and record the classifier when an epoch is completed
The proximal classifier will not be changed once the first
epoch is finished
We compute the cosine similarity between two consecutive
epoch classifiers
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Online Learning Algorithm (Linear)

PA Algorithm with a Proximal Classifier

Test Error Rate of each Epoch

It becomes a constant after 2 to 3 epochs

Yuh-Jye Lee Joint work with Y.-C. Tseng and I.-F. Chen Online Nonlinear SVM for Large-Scale Classification



Online Nonlinear SVM for Large-Scale Classification

Online Nonlinear SVM Classifier

Outline

1 Machine Learning vs. Optimization

2 Online Learning Algorithm (Linear)
Perceptron Algorithm
Passive and Aggressive (PA) Algorithm
PA Algorithm with a Proximal Classifier

3 Online Nonlinear SVM Classifier

4 Numerical Results
Experiment: Linear vs. Nonlinear
Experiment: Proximal Model vs. without Proximal Model

5 Conclusions

Yuh-Jye Lee Joint work with Y.-C. Tseng and I.-F. Chen Online Nonlinear SVM for Large-Scale Classification



Online Nonlinear SVM for Large-Scale Classification

Online Nonlinear SVM Classifier

The Illustration of Nonlinear SVM

Φ

X −−− −→F

Feature map

nonlinear pattern in data space approximate linear pattern in feature space
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Kernel Trick

We can use the value of kernel function to represent the
inner product of two training points in feature space as
follows:

K (x, z) =< φ(x), φ(z) > .

The most popular kernel function is the Gaussian kernel

K (x, z) = e−γ||x−z||22 .

The kernel matrix K (A,A>)m×m represents the inner
product of all points in the feature space where
K (A,A>)ij = K (xi ,xj).
Replace AA> by a nonlinear kernel K (A,A>) without
defining an explicit feature map φ
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Nonlinear SVM: A Full Model

Nonlinear SVM classifier: f (x) =
m∑

i=1
αik(x ,Ai) + b

As many parameters αi as the data points

Nonlinear SVM is a linear combination of basis functions,

B = {1} ∪
{

k(·, x i)
}m

i=1

B is an overcomplete dictionary of functions when m is
large
Fitting data to an overcomplete full model may

Increase computational difficulties model complexity
Need more CPU time and memory space
Be in danger of overfitting
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Reduced SVM: A Compressed Model
It’s desirable to cut down the model complexity

Reduced SVM randomly selects a small subset S̃ to
generate the basis functions B̃:
S̃ = {(x̃ i , ỹi)

∣∣i = 1, . . . , m̃} ⊆ S, B = {1} ∪
{

k(·, x̃ i)
}m̃

i=1

RSVM classifier is in the form f (x) =
m̃∑

i=1
ũik(x , x̃ i) + b

The parameters are determined by fitting entire data

min
ũ,b,ξ>0

C
m∑

j=1

ξj +
1
2

(
∥∥ũ
∥∥2

2 + b2)

s.t. D(K (A, Ã>)ũ + 1b) + ξ > 1
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Nonlinear SVM vs. RSVM
K (A,A>) ∈ Rm×m vs. K (A, Ã>) ∈ Rm×m̃, m >> m̃

Nonlinear SVM RSVM

min
u,b,ξ>0

C
m∑

j=1
ξj + 1

2(
∥∥u
∥∥2

2 + b2) min
ũ,b,ξ>0

C
m∑

j=1
ξj + 1

2(
∥∥ũ
∥∥2

2 + b2)

D(K (A,A>)u + 1b) + ξ > 1 D(K (A, Ã>)ũ + 1b) + ξ > 1
where K (A,A>)ij = k(x i , x j) where K (A, Ã>)ij = k(x i , x̃ j)

Nonlinear SVM vs. RSVM
vs.

D(K(A,AöT)uö + eb) + ø>e

RSVM
min
u,b,ø>0

C
P
j=1

m

øj + 2
1
ííuíí2

2

D(K(A,AT)ë+ eb) + ø>e

Nonlinear SVM
min
ë,b,ø>0

C
P
j=1

m

øj + 2
1
ííëíí2

2

K(A,AT) ∈ Rmâm K(A,AöT) ∈ Rmâmö

K(A,A0) : K(A,Aà0) :

K(A,AT)ij = k(xi, xj) K(A,Aö
T
)ij = k(xi, xöj)where and
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Represent w in the Dual Form

From the dual form of SVM, the normal vector w can be
expressed in terms of the data points, i.e.,

w =
m∑

i=1

(u)ix
i = A>u,

where A = [x1,x2, ...,xm]> is the training data matrix.
Now, we only need to find the solution of u and b.
We let wt = A>ut and bt be the current classifier
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The Passive and Aggressive Algorithm in the Dual
Form

We substitute w and wt in the minimization problem of PA,

min
(u,b)∈Rm+1

1
2

(u>AA>u + b2)− (ut>AA>u + bbt ) (5)

s.t. 1− yt (u>Axt + b) ≤ 0,

The PA can be reformulated in terms of inner products
between the data points.
We can extend to the nonlinear version by utilizing the
“kernel trick”.

Yuh-Jye Lee Joint work with Y.-C. Tseng and I.-F. Chen Online Nonlinear SVM for Large-Scale Classification



Online Nonlinear SVM for Large-Scale Classification

Online Nonlinear SVM Classifier

Kernel PA Closed Form Updating

We derive the closed form updating rules for KPA as follows:

ut+1 = ut + αtytK (A,A>)
−1

K (A,xt ) (6)
bt+1 = bt + αtyt ,

where `t is the loss suffered on round t and αt is defined as

αt =
`t

K (A,xt )>K (A,A>)−1K (A,xt ) + 1

Can’t be used in online manner

Reduced Kernel Trick can help here!
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Sketch of Reduced Kernel PA

Preselect a small subset S̃ = {(x̃ i , ỹi)
∣∣i = 1, . . . , m̃}

Generate K (Ã, Ã>)−1 and substitute K (A,A>)−1 in KPA
For numerical robustness, we can add a small
regularization term εI,

K (Ã, Ã>)ε = K (Ã, Ã>) + εI,

Diagonalize K (Ã, Ã>)−1
ε = PVP> = (PV

1
2 )(PV

1
2 )
>

Change variables, letting

z = (PV
1
2 )
>

ũ, zt = (PV
1
2 )
>

ũt ,

and
K̂ (Ã,xt ) = (PV

1
2 )
>

K (Ã,xt ).
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Final Formulation of RKPA

Then the Reduced Kernel PA can be rewritten as follows:

min
(z,b)∈Rm̃+1

1
2

[z>z + b2]− [zt>z + bbt ] (7)

s.t. 1− yt [z>V−1K̂ (Ã,xt ) + b] ≤ 0,

and the decision function becomes

f (x) = z>V−1K̂ (Ã,xt ) + b.

It is straightforward to obtain the minimization problems
defining Reduced Kernel PA-1 (RKPA-1) and Reduced
Kernel PA-2 (RKPA-2).
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RKPA Updating Rules:

zt+1 = zt + αtytV−1K̂ (Ã,xt ), bt+1 = bt + αtyt

αt =



`t∥∥V−1K̂ (Ã,xt )
∥∥2

+ 1
(RKPA)

min{C, `t∥∥V−1K̂ (Ã,xt )
∥∥2

+ 1
} (RKPA-1)

`t∥∥V−1K̂ (Ã,xt )
∥∥2

+ 1 + 1
2C

(RKPA-2)

, (8)

where `t is the loss suffered on round t .
We no longer need to calculate the inverse of K (Ã, Ã>),
only that of V , the inverse of V is trivial to calculate.
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Reduced Kernel Fisher Discriminant Analysis
(RKFDA)

KFDA is a kernelized version of LDA.
To be able to handle large-scale datasets, we also
introduce the reduced kernel trick, then the solution of
RKFDA is of the form

ũp = [COV(K (Ap, Ã>)) + COV(K (AN , Ã>))]
−1

(M̃P − M̃N),

where AP and AN are, respectively, the positive data and
negative data;, M̃P and M̃N are their respective mean
vectors of reduced kernel data.
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RKPAm: RKPA+quasi-KFD

zt+1 = zt + γzt
p + αtytV−1K̂ (Ã,xt ) (9)

bt+1 = bt + γbt
p + αtyt

αt =



`t − ytγ
(
zt

p
>V−1K̂ (Ã,xt ) + bt

p
)

∥∥V−1K̂ (Ã,xt )
∥∥2

+ 1
(RKPAm)

min{C,
`t − ytγ

(
zt

p
>V−1K̂ (Ã,xt ) + bt

p
)

∥∥V−1K̂ (Ã,xt )
∥∥2

+ 1
} (RKPAm-1)

`t − ytγ
(
zt

p
>V−1K̂ (Ã,xt ) + bt

p
)

∥∥V−1K̂ (Ã,xt )
∥∥2

+ 1 + 1
2C

(RKPAm-2)

Yuh-Jye Lee Joint work with Y.-C. Tseng and I.-F. Chen Online Nonlinear SVM for Large-Scale Classification



Online Nonlinear SVM for Large-Scale Classification

Numerical Results

Outline

1 Machine Learning vs. Optimization

2 Online Learning Algorithm (Linear)
Perceptron Algorithm
Passive and Aggressive (PA) Algorithm
PA Algorithm with a Proximal Classifier

3 Online Nonlinear SVM Classifier

4 Numerical Results
Experiment: Linear vs. Nonlinear
Experiment: Proximal Model vs. without Proximal Model

5 Conclusions

Yuh-Jye Lee Joint work with Y.-C. Tseng and I.-F. Chen Online Nonlinear SVM for Large-Scale Classification



Online Nonlinear SVM for Large-Scale Classification

Numerical Results

Experiment: Linear vs. Nonlinear

Experimental Objective and Setting

Objective:
Linear model (PA) vs. Nonlinear model (RKPA)
Sensitive to the input order.

In our experiment, the results of the RKPA, RKPA-1 and
RKPA-2 were compared with the PA, PA-1 and PA-2,
respectively.
We run a single pass of the PA algorithm and RKPA
algorithm 10 times with different input orders each time.
For nonlinear model, we use the Gaussian kernel.
We compare the results on 8 datasets. The sizes of these
datasets range from small-scale, medium-scale to
large-scale. Table 1 summarizes the statistics of the
datasets.
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Numerical Results

Experiment: Linear vs. Nonlinear

The Summary of Datasets

Table: The statistics of the datasets used in the experiment.

Dataset Training Testing Features
svmguide1 3,089 4,000 4

w3a 4,912 44,837 300
a9a 32,561 16,281 123

ijcnn1 35,000 91,701 22
Cod-rna 59,535 271,617 8
usps01 266,079 75,383 676

covertype 522,910 58,102 54
Checkerboard 1,000,000 2,000 2
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Numerical Results

Experiment: Linear vs. Nonlinear

Comparison of Testing Error Rate over 10 Runs

Table: The comparison of average testing error rate and the standard
deviation (%).

Linear SSVM PA RKPA PA-1 RKPA-1 PA-2 RKPA-2

dataset batch avg (std) avg (std) avg (std) avg (std) avg (std) avg (std)

svmguide1 4.33 14.21 (8.04) 4.37 (0.70) 10.00 (6.59) 3.62 (0.15) 10.05 (5.17) 3.61 (0.27)

w3a 1.67 10.49 (11.60) 2.93 (0.50) 2.14 (0.08) 2.83 (0.11) 2.11 (0.08) 2.81 (0.13)

a9a 14.88 21.01 (3.56) 19.54 (3.62) 15.25 (0.14) 15.19 (0.29) 15.22 (0.15) 15.15 (0.31)

ijcnn1 8.68 14.10 (4.86) 6.58 (1.48) 8.67 (0.15) 5.00 (0.78) 8.97 (0.05) 5.21 (0.80)

Cod-rna 4.83 10.33 (8.07) 6.24 (2.01) 5.57 (0.81) 4.28 (0.48) 6.14 (1.67) 4.46 (0.61)

usps01 3.35 4.88 (0.79) 0.57 (0.07) 3.62 (0.08) 0.57 (0.07) 3.61 (0.07) 0.57 (0.07)

covertype 24.52 34.56 (3.62) 12.04 (2.10) 24.11 (0.20) 10.77 (0.66) 24.81 (0.19) 10.96 (0.89)

Checkerboard 50.65 50.83 (2.33) 1.07 (0.23) 48.63 (2.81) 0.90 (0.11) 48.22 (2.58) 0.83 (0.14)
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Numerical Results

Experiment: Proximal Model vs. without Proximal Model

Comparison of Testing Error Rate over 10 Runs:
RKPA vs. RKPAm

Table: The comparison of average testing error rate and the standard
deviation (%).

RKPA RKPAm RKPA-1 RKPAm-1 RKPA-2 RKPAm-2

dataset avg (std) avg (std) avg (std) avg (std) avg (std) avg (std)

svmguide1 4.37 (0.70) 3.73 (0.54) 3.62 (0.15) 3.43 (0.15) 3.61 (0.27) 3.36 (0.22)

w3a 2.93 (0.50) 2.71 (0.57) 2.83 (0.11) 2.62 (0.12) 2.81 (0.13) 2.63 (0.16)

a9a 19.54 (3.62) 19.51 (3.69) 15.19 (0.29) 15.17 (0.22) 15.15 (0.31) 15.14 (0.30)

ijcnn1 6.58 (1.48) 3.63 (0.69) 5.00 (0.78) 3.64 (0.73) 5.21 (0.80) 3.64 (0.73)

Cod-rna 6.24 (2.01) 5.64 (1.15) 4.28 (0.48) 4.23 (0.47) 4.46 (0.61) 4.38 (0.59)

usps01 0.57 (0.07) 0.54 (0.06) 0.57 (0.07) 0.54 (0.06) 0.57 (0.07) 0.54 (0.06)

covertype 12.04 (2.10) 15.10 (3.97) 10.77 (0.66) 10.38 (0.55) 10.96 (0.89) 10.74 (0.83)

Checkerboard 1.07 (0.23) 0.82 (0.18) 0.90 (0.11) 0.83 (0.17) 0.83 (0.14) 0.78 (0.14)
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Numerical Results

Experiment: Proximal Model vs. without Proximal Model

Comparison of Average Running Time over 10
Runs

Table: Comparison of average training time (sec.).

RKPA RKPAm RKPA-1 RKPAm-1 RKPA-2 RKPAm-2

svmguide1 0.53 0.57 0.50 0.59 0.52 0.62

w3a 0.66 0.74 0.66 0.79 0.68 0.80

a9a 1.76 3.56 1.68 3.43 1.74 4.20

ijcnn1 4.46 5.54 4.42 5.52 4.53 5.84

Cod-rna 7.57 9.64 7.24 9.85 7.43 11.81

usps01 52.11 58.01 53.07 57.41 52.52 57.51

covertype 5127.77 5294.39 5128.12 5357.68 5131.65 5398.59

Checkerboard 12.81 16.38 13.21 16.80 13.92 18.75
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Conclusions

We used the online learning framework to solve
large-scale binary classification problem
We derived a set of update schemes (linear and nonlinear)
in closed form for PAm, RKPAm
Compared to the conventional PA algorithm, utilizing the
proximal classifier will have

Less sensitive to the input order
Less number of updating made in a single pass
Higher similarity between two consecutive epochs resulting
classifiers

We can have a near-optimal classifier in a single pass
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