Online Nonlinear Support Vector Machine for Large-Scale Classification

Yuh-Jye Lee Joint work with Y.-C. Tseng and I.-F. Chen

Lab of Data Science and Machine Intelligence Dept. of CSIE@TaiwanTech.

Dept. of Applied Mathematics, NCTU October 6, 2015

イロト イポト イヨト イヨト

Outline

- Online Learning Algorithm (Linear)
 - Perceptron Algorithm
 - Passive and Aggressive (PA) Algorithm
 - PA Algorithm with a Proximal Classifier
- Online Nonlinear SVM Classifier
 - 4 Numerical Results
 - Experiment: Linear vs. Nonlinear
 - Experiment: Proximal Model vs. without Proximal Model

(신문) (문문

5 Conclusions

Outline

Machine Learning vs. Optimization

- Online Learning Algorithm (Linear)
 - Perceptron Algorithm
 - Passive and Aggressive (PA) Algorithm
 - PA Algorithm with a Proximal Classifier
- Online Nonlinear SVM Classifier
- Numerical Results
 - Experiment: Linear vs. Nonlinear
 - Experiment: Proximal Model vs. without Proximal Model

・ 同 ト ・ ヨ ト ・ ヨ ト

5 Conclusions

Supervised Learning Problems

- Given a training set $S = \{(\mathbf{x}^1, y_1), (\mathbf{x}^2, y_2), \dots, (\mathbf{x}^m, y_m)\}$. We would like to construct a *hypothesis (or classifier)*, $h(\mathbf{x})$ that can correctly predict the *unseen* label *y* given a new instance \mathbf{x}
 - If $h(\mathbf{x}) \neq y$ then we get some loss or penalty
 - For example: $\ell(h(\mathbf{x}), y) = \frac{1}{2}|h(\mathbf{x}) y|$
- Key Assumption: training instances are drawn from an unknown but fixed probability distribution P(x, y) independently.
- Two supervised learning examples:
 - If y is drawn from a *finite set* it will be a *classification problem*.
 - If y is a *real number* it becomes a *regression problem*

A Supervised Learning Example: Data Fitting

Suppose we want to fit the data

$$(x_1, y_1), (x_2, y_2), \ldots, (x_m, y_m)$$

with a straight line $y = w_0 + w_1 x$.

Yuh-Jye Lee Joint work with Y.-C. Tseng and I.-F. Chen Online Nonlinear SVM for Large-Scale Classification

Least Squares Problem Regression in Supervised Learning

- Given a linear system, Aw = y, $A \in \mathbb{R}^{m \times n}$ with m > n:
- If linear system has no solution, an approximated solution can be obtained by solving the following minimization problem.

$$\min_{w \in \mathbb{R}^n} r^\top r = \min_{w \in \mathbb{R}^n} \|r\|_2^2 = \min_{w \in \mathbb{R}^n} \sum_{i=1}^m (y_i - A_i w)^2, \quad (1)$$

where $r = y - Aw \in \mathbb{R}^m$ is the *residual*.

• You can fit them with ℓ_1 loss function

$$\min_{w \in \mathbb{R}^n} \|r\|_1 = \min_{w \in \mathbb{R}^n} \sum_{i=1}^m |y_i - A_i w|$$
(2)

Binary Classification Problem

Given a training set

$$\begin{split} \boldsymbol{S} &= \{(\boldsymbol{\mathbf{x}}^{j}, y_{j}) | \boldsymbol{\mathbf{x}}^{j} \in \mathbb{R}^{d}, y_{j} \in \{-1, 1\}, j = 1, \dots, m\} \\ \boldsymbol{\mathbf{x}}^{j} \in \boldsymbol{P} \Leftrightarrow y_{j} = 1 \ \& \ \boldsymbol{\mathbf{x}}^{j} \in \boldsymbol{N} \Leftrightarrow y_{j} = -1 \end{split}$$

Main Goal:

Predict the unseen class label for new data

Find a function $f : \mathbb{R}^d \to \mathbb{R}$ by learning from data

 $f(\mathbf{x}) \ge 0 \Rightarrow \mathbf{x} \in P$ and $f(\mathbf{x}) < 0 \Rightarrow \mathbf{x} \in N$

$$h(\mathbf{x}) = sgn(f(\mathbf{x}))$$

The simplest function is linear:

$$f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b = \sum_{i=1}^{d} w_i x_i + b$$

Expected Risk vs. Empirical Risk

- Assumption: training instances are drawn from an unknown but fixed probability distribution $P(\mathbf{x}, y)$ independently.
- Ideally, we would like to have the *optimal rule* h^* that minimizes the *Expected Risk*: $E(h) = \int \ell(h(\mathbf{x}), y) dP(\mathbf{x}, y)$ among all functions
- Unfortunately, we can not do it. P(x, y) is unknown and we have to restrict ourselves in a certain hypothesis space, H
- How about compute $h_m^* \in \mathcal{H}$ that minimizes the *Empirical Risk*:

$$E_m(h) = \frac{1}{m} \sum_j \ell(h(\mathbf{x}^j), y_j)$$

イロト 不得 とくほ とくほ とうほ

Only minimizing the empirical risk will be in danger of overfitting

- Most of learning algorithms can be formulated as an optimization problem
- The objective function consists of two parts: $E_m(h)(bias)+$ controls on VC-error bound (variance)
- Controlling the VC-error bound will avoid the *overfitting* risk
- It can be achieved via adding the *regularization* term into the objective function
- Note that: We have made lots of approximations when formulate a learning task as an optimization problem
 - Why bother to find the optimal solution for the problem?

イロト イポト イヨト イヨト

- Most of learning algorithms can be formulated as an optimization problem
- The objective function consists of two parts: E_m(h)(bias)+ controls on VC-error bound (variance)
- Controlling the VC-error bound will avoid the overfitting risk
- It can be achieved via adding the *regularization* term into the objective function
- Note that: We have made lots of approximations when formulate a learning task as an optimization problem
 - Why bother to find the optimal solution for the problem?

イロト イポト イヨト イヨト

- Most of learning algorithms can be formulated as an optimization problem
- The objective function consists of two parts: E_m(h)(bias)+ controls on VC-error bound (variance)
- Controlling the VC-error bound will avoid the *overfitting* risk
- It can be achieved via adding the *regularization* term into the objective function
- Note that: We have made lots of approximations when formulate a learning task as an optimization problem
 - Why bother to find the optimal solution for the problem?

イロト イポト イヨト イヨト

- Most of learning algorithms can be formulated as an optimization problem
- The objective function consists of two parts: E_m(h)(bias)+ controls on VC-error bound (variance)
- Controlling the VC-error bound will avoid the *overfitting* risk
- It can be achieved via adding the *regularization* term into the objective function
- Note that: We have made lots of approximations when formulate a learning task as an optimization problem
 - Why bother to find the optimal solution for the problem?

イロト イポト イヨト イヨト

- Most of learning algorithms can be formulated as an optimization problem
- The objective function consists of two parts: E_m(h)(bias)+ controls on VC-error bound (variance)
- Controlling the VC-error bound will avoid the *overfitting* risk
- It can be achieved via adding the *regularization* term into the objective function
- Note that: We have made lots of approximations when formulate a learning task as an optimization problem
 - Why bother to find the optimal solution for the problem?

イロト イポト イヨト イヨト

- Most of learning algorithms can be formulated as an optimization problem
- The objective function consists of two parts: E_m(h)(bias)+ controls on VC-error bound (variance)
- Controlling the VC-error bound will avoid the *overfitting* risk
- It can be achieved via adding the *regularization* term into the objective function
- Note that: We have made lots of approximations when formulate a learning task as an optimization problem
 - Why bother to find the optimal solution for the problem?

ヘロト ヘ戸ト ヘヨト ヘヨト

- Most of learning algorithms can be formulated as an optimization problem
- The objective function consists of two parts: E_m(h)(bias)+ controls on VC-error bound (variance)
- Controlling the VC-error bound will avoid the *overfitting* risk
- It can be achieved via adding the *regularization* term into the objective function
- Note that: We have made lots of approximations when formulate a learning task as an optimization problem
 - Why bother to find the optimal solution for the problem?

イロト イポト イヨト イヨト

Gradient Descent: Batch Learning

• For an optimization problem

$$\min f(\mathbf{w}) = \min r(\mathbf{w}) + \frac{1}{m} \sum_{j=1}^{m} \ell(\mathbf{w}; (\mathbf{x}^{j}, y_{j}))$$

 GD tries to find a direction and the learning rate decreasing the objective function value.

$$\mathbf{w}^{t+1} = \mathbf{w}^t + \eta(-\nabla f(\mathbf{w}^t))$$

where η is the learning rate, $-\nabla f(\mathbf{w}^t)$ is the steepest descent direction,

$$\nabla f(\mathbf{w}^t) = \nabla r(\mathbf{w}^t) + \frac{1}{m} \sum_{i=1}^m \nabla \ell(\mathbf{w}^t; (\mathbf{x}^i, y_i))$$

• When *m* is large, computing $\sum_{j=1}^{m} \nabla \ell(\mathbf{w}^{t}; (\mathbf{x}^{j}, y_{j}))$ may cost much time.

Gradient Descent is Bad if Started with a Bad Initial

- Only utilizes the First Order Information
- Only has a linear convergent rate for a simple quadratic function

・ 同 ト ・ ヨ ト ・ ヨ ト

Stochastic Gradient Descent: Online Learning

- In GD, we compute the gradient using the entire training set.
- In stochastic gradient descent(SGD), we use

$$\nabla \ell(\mathbf{w}^t; (\mathbf{x}^t, y_t))$$
 instead of $\frac{1}{m} \sum_{j=1}^m \nabla \ell(\mathbf{w}^t; (\mathbf{x}^j, y_j))$

• So the descent direction of $f(\mathbf{w}^t)$ and \mathbf{w}^{t+1}

$$\mathbf{d}^{t} = -\nabla r(\mathbf{w}^{t}) - \nabla \ell(\mathbf{w}^{t}; (\mathbf{x}^{t}, y_{t})), \ \mathbf{w}^{t+1} = \mathbf{w}^{t} + \eta \mathbf{d}^{t}$$

イロト イポト イヨト イヨト

- SGD computes the *descent direction* using only one instance.
- In experiment, SGD is significantly faster than GD when m is large.

People of ACM: David Blei (Sept. 9, 2014)

The recipient of the 2013 ACM- Infosys Foundation Award in the Computing Sciences, he is joining Columbia University this fall as a Professor of Statistics and Computer Science, and will become a member of Columbia's Institute for Data Sciences and Engineering.

[Q]: What is the most important recent innovation in machine learning?

[A]: One of the main recent innovations in ML research has been that we (the ML community) can now scale up our algorithms to massive data, and I think that this has fueled the modern renaissance of ML ideas in industry. The main idea is called *stochastic optimization*, which is an adaptation of an *old algorithm invented by statisticians in the 1950s*.

・ロト ・ 理 ト ・ ヨ ト ・

People of ACM: David Blei (Sept. 9, 2014)

The recipient of the 2013 ACM- Infosys Foundation Award in the Computing Sciences, he is joining Columbia University this fall as a Professor of Statistics and Computer Science, and will become a member of Columbia's Institute for Data Sciences and Engineering.

[Q]: What is the most important recent innovation in machine learning?

[A]: One of the main recent innovations in ML research has been that we (the ML community) can now scale up our algorithms to massive data, and I think that this has fueled the modern renaissance of ML ideas in industry. The main idea is called *stochastic optimization*, which is an adaptation of an *old algorithm invented by statisticians in the 1950s*.

ヘロト 人間 ト ヘヨト ヘヨト

People of ACM: David Blei (Sept. 9, 2014)

[Q]: What is the most important recent innovation in machine learning?

[Continuous]: In short, many machine learning problems can be boiled down to trying to find parameters that maximize (or minimize) a function. A common way to do this is "gradient ascent," iteratively following the steepest direction to climb a function to its top. This technique requires repeatedly calculating the steepest direction, and the problem is that this calculation can be expensive. *Stochastic optimization* lets us use *cheaper approximate calculations*. It has transformed *modern* machine learning.

イロト イポト イヨト イヨト 三日

Large-Scale (Big Data) Problems

- Two definitions of large-scale problems,
 - It consists of problems where the main computational constraint is the amount of time available, rather than the number of instances [Bottou, 2008].
 - Training set may not be stored in modern computer's memory [Langford, 2008].
- We are in a need of learning algorithms that scale linearly with the size of datasets
- The performance of the algorithms should be better than processing a random subset of the data via conventional learning algorithms

くロト (過) (目) (日)

Large-Scale (Big Data) Problems

- Two definitions of large-scale problems,
 - It consists of problems where the main computational constraint is the amount of time available, rather than the number of instances [Bottou, 2008].
 - Training set may not be stored in modern computer's memory [Langford, 2008].
- We are in a need of learning algorithms that scale linearly with the size of datasets
- The performance of the algorithms should be better than processing a random subset of the data via conventional learning algorithms

ヘロト ヘ戸ト ヘヨト ヘヨト

Outline

Machine Learning vs. Optimization

Online Learning Algorithm (Linear)

- Perceptron Algorithm
- Passive and Aggressive (PA) Algorithm
- PA Algorithm with a Proximal Classifier
- Online Nonlinear SVM Classifier
- 4 Numerical Results
 - Experiment: Linear vs. Nonlinear
 - Experiment: Proximal Model vs. without Proximal Model

・ 同 ト ・ ヨ ト ・ ヨ ト

5 Conclusions

Online Learning

Definition of online learning

Given a set of new training data,

- Online learner can update its model without reading old data while improving its performance.
- In contrast, off-line learner must combine old and new data and start the learning all over again, otherwise the performance will suffer.
- Online is considered as a solution of large learning tasks
- Usually require several passes (or *epochs*) through the training instances
- Need to keep all instances unless we only run the algorithm one single pass

ヘロト 人間 ト ヘヨト ヘヨト

Online Learning Algorithm (Linear)

Perceptron Algorithm

Outline

Machine Learning vs. Optimization

- Online Learning Algorithm (Linear)
 - Perceptron Algorithm
 - Passive and Aggressive (PA) Algorithm
 - PA Algorithm with a Proximal Classifier
- Online Nonlinear SVM Classifier
- 4 Numerical Results
 - Experiment: Linear vs. Nonlinear
 - Experiment: Proximal Model vs. without Proximal Model

・ 同 ト ・ ヨ ト ・ ヨ ト

5 Conclusions

Online Learning Algorithm (Linear)

Perceptron Algorithm

Perceptron Algorithm [Rosenblatt, 1956]

- An online learning algorithm and a mistake-driven procedure
- The current classifier is updated whenever the new arriving instance is misclassified

Initiation:
$$k = 0$$
, $R = \max_{1 \le j \le m} \|\mathbf{x}^j\|_2$
repeat

for
$$t = 1 : m$$

if $y_t(\langle \mathbf{w}^k, \mathbf{x}^t \rangle + b_k) \le 0$
 $\mathbf{w}^{k+1} = \mathbf{w}^k + \eta y_t \mathbf{x}^t$
 $b_{k+1} = b_k + \eta y_t R^2$
 $k = k + 1$
end

end

until no mistake made within the for-loop

• *k* is number of mistakes. $\eta > 0$ is the learning rate.

Online Learning Algorithm (Linear)

Perceptron Algorithm

Perceptron Algorithm [Rosenblatt, 1956]

• The Perceptron is considered as a SGD method. The underlying optimization problem of the algorithm

$$\min_{(\mathbf{w},b)\in\mathbb{R}^{d+1}} \quad \sum_{j=1}^{m} (-y_j(\langle \mathbf{w},\mathbf{x}_j\rangle+b))_+$$

- In the linearly separable case, the Perceptron alg. will be terminated in finite steps no matter what learning rate is chosen
- In the nonseparable case, how to decide the appropriate learning rate that will make the least mistake is very difficult
- Learning rate, η, can be a nonnegative number. More general case, it can be a positive definite matrix

ヘロト ヘ戸ト ヘヨト ヘヨト

Online Learning Algorithm (Linear)

Passive and Aggressive (PA) Algorithm

Outline

- Machine Learning vs. Optimization
- 2 Online Learning Algorithm (Linear)
 - Perceptron Algorithm
 - Passive and Aggressive (PA) Algorithm
 - PA Algorithm with a Proximal Classifier
- Online Nonlinear SVM Classifier
- 4 Numerical Results
 - Experiment: Linear vs. Nonlinear
 - Experiment: Proximal Model vs. without Proximal Model

・ 同 ト ・ ヨ ト ・ ヨ ト

5 Conclusions

Online Learning Algorithm (Linear)

Passive and Aggressive (PA) Algorithm

Key Idea of PA Algorithm, K. Crammer, et al., 2005

- The PA algorithm suggests that the new classifier should not only classify the new arriving data correctly but also as close to the current classifier as possible
- It can be formulated the problem as follows:

$$\mathbf{w}^{t+1} \in \arg\min_{\mathbf{w}\in\mathbb{R}^d} \quad \frac{1}{2} \|\mathbf{w} - \mathbf{w}^t\|_2^2$$
(3)
s.t. $\ell(\mathbf{w}; (\mathbf{x}^t, y_t)) = 0$

・ 同 ト ・ ヨ ト ・ ヨ ト …

where $\ell(\mathbf{w}; (\mathbf{x}^t, y_t))$ is a hinge loss function

Online Learning Algorithm (Linear)

Passive and Aggressive (PA) Algorithm

Simplify the PA Algorithm

• We can simplify Eq.(3) as follows:

$$\mathbf{w}^{t+1} \in \arg\min_{\mathbf{w}\in\mathbb{R}^d} \ \frac{1}{2} \|\mathbf{w}\|_2^2 - \langle \mathbf{w}, \mathbf{w}^t \rangle$$
(4)
s.t. $\ell(\mathbf{w}; (\mathbf{x}^t, y_t)) = 0$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- In the Eq.(4), the PA algorithm implicitly minimizes the regularization term, $\frac{1}{2}\|\bm{w}\|_2^2$
- Minimizing -(w, w^t) is also expressed that the new updated classifier must be similar to the current classifier

Online Nonlinear SVM for Large-Scale Classification Online Learning Algorithm (Linear) Passive and Aggressive (PA) Algorithm

PA-1 and PA-2

- Based on the concept of the *soft-margin* classifier, the non-negative slack variable ξ was introduced into the PA algorithm in two different ways
 - Linear scale with ξ (called *PA-1*)

$$\begin{split} \mathbf{w}^{t+1} \in & \arg\min_{\mathbf{w}\in\mathbb{R}^d} \quad \frac{1}{2} \|\mathbf{w} - \mathbf{w}^t\|_2^2 + C\xi\\ \text{s.t.} \quad & \ell(\mathbf{w}; (\mathbf{x}^t, y_t)) \leq \xi \text{ and } \xi \geq 0 \end{split}$$

• Square scale with ξ (called *PA-2*)

$$\begin{split} \mathbf{w}^{t+1} \in & \arg\min_{\mathbf{w}\in\mathbb{R}^d} \quad \frac{1}{2} \|\mathbf{w} - \mathbf{w}^t\|_2^2 + C\xi^2\\ \text{s.t.} \quad & \ell(\mathbf{w}; (\mathbf{x}^t, y_t)) \leq \xi \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Online Learning Algorithm (Linear)

Passive and Aggressive (PA) Algorithm

PA Algorithm Closed Form Updating

- It seems that we have to solve an optimization problem for each instance. Fortunately, PA, PA-1 and PA-2 come with the closed form of updating schemes
- They share the same closed form w^{t+1} = w^t + τ_ty_tx^t where τ_t > 0 is defined as

$$\tau_{t} = \begin{cases} \frac{\ell(\mathbf{w}^{t}; (\mathbf{x}^{t}, y_{t}))}{\|\mathbf{x}^{t}\|_{2}^{2}} & (\mathsf{PA}) \\ \min\{C, \frac{\ell(\mathbf{w}^{t}; (\mathbf{x}^{t}, y_{t}))}{\|\mathbf{x}^{t}\|_{2}^{2}}\} & (\mathsf{PA-1}) \\ \frac{\ell(\mathbf{w}^{t}; (\mathbf{x}^{t}, y_{t}))}{\|\mathbf{x}^{t}\|_{2}^{2} + \frac{1}{2C}} & (\mathsf{PA-2}) \end{cases}$$

 It replaced the fixed learning rate such as Perceptron algorithm with the dynamic learning rate depending on the current instance

Yuh-Jye Lee Joint work with Y.-C. Tseng and I.-F. Chen Online Nonlinear SVM for Large-Scale Classification

Online Learning Algorithm (Linear)

PA Algorithm with a Proximal Classifier

Outline

Machine Learning vs. Optimization

- 2 Online Learning Algorithm (Linear)
 - Perceptron Algorithm
 - Passive and Aggressive (PA) Algorithm
 - PA Algorithm with a Proximal Classifier
- Online Nonlinear SVM Classifier
- 4 Numerical Results
 - Experiment: Linear vs. Nonlinear
 - Experiment: Proximal Model vs. without Proximal Model

・ 同 ト ・ ヨ ト ・ ヨ ト

5 Conclusions

Online Learning Algorithm (Linear)

PA Algorithm with a Proximal Classifier

Motivation for a Proximal Classifier

- In online learning framework, we do not keep the previous instances in the memory
- A lack of memory for previous instances might hurt the learning efficiency
- The previous instances which have been classified correctly may be misclassified again
- We keep some simple statistical information (mean and variance) to summarize the previous instances
- Have to take the cost into account, fixed and small size memory and linear CPU time

・ 回 ト ・ ヨ ト ・ ヨ ト

Online Learning Algorithm (Linear)

PA Algorithm with a Proximal Classifier

Illustrations of Simple Proximal Models

- If the dataset is easy to separate, the means difference suggests a good proximal classifier (left figure)
- For the more complicated dataset, the performance of the LDA direction is better (right figure)
- The proximal classifier would provide a good suggestion for our classifier updating
Online Learning Algorithm (Linear)

PA Algorithm with a Proximal Classifier

Proximal Classifier: Quasi-LDA

- However, the cost of computing the LDA is expensive when the input space is in the high dimensional space
- We proposed the quasi-LDA direction as our proximal classifier

$$(\mathbf{w}_{p}^{t})_{i} = \frac{(\mathbf{m}_{+}^{t})_{i} - (\mathbf{m}_{-}^{t})_{i}}{(\mathbf{s}_{+}^{t})_{i} + (\mathbf{s}_{-}^{t})_{i}}, i = 1, 2, \dots, d$$

where

 \mathbf{w}_{p}^{t} $\mathbf{m}_{+/-}^{t}$ $\mathbf{s}_{+/-}^{t}$

- : the proximal classifier on round t
- : mean vector of Pos./Neg. class on round t
 - : variance vector of Pos./Neg. class on round t

• It is very cheap both in CPU time and in memory usage

Online Learning Algorithm (Linear)

PA Algorithm with a Proximal Classifier

The Details of Proximal Classifier Small Trick: $Var(X) = E((X - E(X))^2) = E(X^2) - (E(X))^2$

The details about the statistical information we maintained

$$\begin{array}{rcl} \mathcal{P}^t & = & \{j \mid y_j \in \textit{positive} \ , \ j = 1, 2, \dots, t\} \\ \mathcal{N}^t & = & \{j \mid y_j \in \textit{negative} \ , \ j = 1, 2, \dots, t\} \end{array}$$

$$\begin{aligned} &(\mathbf{s}_{+}^{t})_{i} &= \frac{1}{|P^{t}|-1} \sum_{j \in P^{t}} (\mathbf{x}^{j})_{i}^{2} - \frac{|P^{t}|}{|P^{t}|-1} (\mathbf{m}_{+}^{t})_{i}^{2} & i = 1, 2, \dots, d \\ &(\mathbf{s}_{-}^{t})_{i} &= \frac{1}{|N^{t}|-1} \sum_{j \in N^{t}} (\mathbf{x}^{j})_{i}^{2} - \frac{|N^{t}|}{|N^{t}|-1} (\mathbf{m}_{-}^{t})_{i}^{2} & i = 1, 2, \dots, d \end{aligned}$$

• All we need are $(\mathbf{m}_{+}^{t})_{i}$, $(\mathbf{m}_{-}^{t})_{i}$, $\sum_{j \in P^{t}} (\mathbf{x}^{j})_{i}^{2}$ and $\sum_{j \in N^{t}} (\mathbf{x}^{j})_{i}^{2}$ for each attribute in online fashion

Online Learning Algorithm (Linear)

PA Algorithm with a Proximal Classifier

PA Algorithm with a Proximal Model

How to combine the PA algorithm with the proximal classifier?

- Remember, in the PA algorithm, (w, w^t) is expressed as the similarity between w and w^t
- Therefore, we can formulate our idea by adding -γ(w, w^t_ρ) into the Eq.(4), called PAm:

$$\begin{split} \mathbf{w}^{t+1} \in & \arg\min_{\mathbf{w}\in\mathbb{R}^d} \quad \frac{1}{2} \|\mathbf{w}\|_2^2 - \langle \mathbf{w}, \mathbf{w}^t \rangle - \gamma \langle \mathbf{w}, \mathbf{w}_p^t \rangle \\ & \text{s.t.} \quad \ell(\mathbf{w}; (\mathbf{x}^t, \mathbf{y}_t)) = \mathbf{0} \end{split}$$

- Minimizing -(w, w^t) γ(w, w^t_p) is the way to keep the new classifier w to be close to w^t and w^t_p
- -γ(w, w^t_ρ) also can be introduced into the PA-1 and PA-2, called PAm-1 and PAm-2, respectively

<ロン <回と < 注入 < 注入 < 注入 = 注

Online Learning Algorithm (Linear)

PA Algorithm with a Proximal Classifier

Closed Form Updating Rule of PAm Algorithm

We derive the closed form updating rules for PAm, PAm-1 and PAm-2 as follows, they also shared the same closed form

$$\mathbf{w}^{t+1} = \mathbf{w}^t + \gamma \mathbf{w}_{p}^t + \alpha_t y_t \mathbf{x}^t$$

where $\alpha_t > 0$ is defined as

$$\alpha_{t} = \begin{cases} \frac{\ell(\mathbf{w}^{t};(\mathbf{x}^{t}, y_{t})) - \gamma y_{t} \langle \mathbf{w}_{p}^{t}, \mathbf{x}^{t} \rangle}{\|\mathbf{x}^{t}\|_{2}^{2}} & (PAm) \\ \min\{C, \frac{\ell(\mathbf{w}^{t};(\mathbf{x}^{t}, y_{t})) - \gamma y_{t} \langle \mathbf{w}_{p}^{t}, \mathbf{x}^{t} \rangle}{\|\mathbf{x}^{t}\|_{2}^{2}}\} & (PAm-1) \\ \frac{\ell(\mathbf{w}^{t};(\mathbf{x}^{t}, y_{t})) - \gamma y_{t} \langle \mathbf{w}_{p}^{t}, \mathbf{x}^{t} \rangle}{\|\mathbf{x}^{t}\|_{2}^{2} + \frac{1}{2C}} & (PAm-2) \end{cases}$$

Yuh-Jye Lee Joint work with Y.-C. Tseng and I.-F. Chen Online Nonlinear SVM for Large-Scale Classification

ヘロン 人間 とくほ とくほ とう

Online Learning Algorithm (Linear)

PA Algorithm with a Proximal Classifier

Convergence Behavior: PA vs. PAm

- Run 10 epochs with the same input order for each methods and record the classifier when an epoch is completed
- The proximal classifier will not be changed once the first epoch is finished
- We compute the cosine similarity between two consecutive epoch classifiers

Yuh-Jye Lee Joint work with Y.-C. Tseng and I.-F. Chen Onli

Online Nonlinear SVM for Large-Scale Classification

Online Learning Algorithm (Linear)

PA Algorithm with a Proximal Classifier

Test Error Rate of each Epoch

It becomes a constant after 2 to 3 epochs

3

Outline

- 2) Online Learning Algorithm (Linear)
 - Perceptron Algorithm
 - Passive and Aggressive (PA) Algorithm
 - PA Algorithm with a Proximal Classifier
- Online Nonlinear SVM Classifier
 - Numerical Results
 - Experiment: Linear vs. Nonlinear
 - Experiment: Proximal Model vs. without Proximal Model

・ 同 ト ・ ヨ ト ・ ヨ ト

5 Conclusions

The Illustration of Nonlinear SVM

Yuh-Jye Lee Joint work with Y.-C. Tseng and I.-F. Chen

Online Nonlinear SVM for Large-Scale Classification

Kernel Trick

• We can use the value of kernel function to represent the inner product of two training points in feature space as follows:

$$K(\mathbf{x}, \mathbf{z}) = <\phi(\mathbf{x}), \phi(\mathbf{z}) > .$$

• The most popular kernel function is the Gaussian kernel

$$K(\mathbf{x}, \mathbf{z}) = e^{-\gamma ||\mathbf{x}-\mathbf{z}||_2^2}.$$

- The kernel matrix K(A, A[⊤])_{m×m} represents the inner product of all points in the feature space where K(A, A[⊤])_{ij} = K(**x**_i, **x**_j).
- Replace AA^T by a nonlinear kernel K(A, A^T) without defining an explicit feature map φ

Nonlinear SVM: A Full Model

- Nonlinear SVM classifier: $f(x) = \sum_{i=1}^{m} \alpha_i k(x, A_i) + b$
 - As many parameters α_i as the data points
- Nonlinear SVM is a linear combination of basis functions,

$$\mathcal{B} = \{1\} \cup \left\{k(\cdot, x^i)\right\}_{i=1}^m$$

 $\ensuremath{\mathcal{B}}$ is an overcomplete dictionary of functions when m is large

- Fitting data to an overcomplete full model may
 - Increase computational difficulties model complexity
 - Need more CPU time and memory space
 - Be in danger of overfitting

イロト イポト イヨト イヨト

Reduced SVM: A Compressed Model

It's desirable to cut down the model complexity

- Reduced SVM randomly selects a small subset S to generate the basis functions $\widetilde{\mathcal{B}}$: $\widetilde{S} = \{(\widetilde{x}^i, \widetilde{y}_i) | i = 1, ..., \widetilde{m}\} \subseteq S, \overline{\mathcal{B}} = \{1\} \cup \{k(\cdot, \widetilde{x}^i)\}_{i=1}^{\widetilde{m}}$
- RSVM classifier is in the form $f(x) = \sum_{i=1}^{\widetilde{m}} \widetilde{u}_i k(x, \widetilde{x}^i) + b$
- The parameters are determined by fitting entire data

$$\min_{\widetilde{u},b,\xi \ge 0} \quad C \sum_{j=1}^{m} \xi_j + \frac{1}{2} (\|\widetilde{u}\|_2^2 + b^2)$$

s.t.
$$D(K(A, \widetilde{A}^{\top})\widetilde{u} + \mathbf{1}b) + \xi \ge \mathbf{1}$$

Online Nonlinear SVM Classifier

Nonlinear SVM vs. RSVM $K(A, A^{\top}) \in \mathbb{R}^{m \times m}$ vs. $K(A, \widetilde{A}^{\top}) \in \mathbb{R}^{m \times \widetilde{m}}, m \gg \widetilde{m}$

Nonlinear SVM

$$\min_{\substack{u,b,\xi \ge 0}} C \sum_{j=1}^{m} \xi_j + \frac{1}{2} (\|u\|_2^2 + b^2)$$

$$D(K(A, A^{\top})u + \mathbf{1}b) + \xi \ge \mathbf{1}$$
where $K(A, A^{\top})_{ij} = k(x^i, x^j)$

RSVM

$$\min_{\widetilde{u},b,\xi \ge 0} C \sum_{j=1}^{m} \xi_j + \frac{1}{2} (\|\widetilde{u}\|_2^2 + b^2)$$
$$D(K(A,\widetilde{A}^{\top})\widetilde{u} + \mathbf{1}b) + \xi \ge \mathbf{1}$$
where $K(A,\widetilde{A}^{\top})_{ij} = k(x^i,\widetilde{x}^j)$

3

Yuh-Jye Lee Joint work with Y.-C. Tseng and I.-F. Chen Online Nonlinear SVM for Large-Scale Classification

Represent w in the Dual Form

• From the dual form of SVM, the normal vector **w** can be expressed in terms of the data points, i.e.,

$$\mathbf{w} = \sum_{i=1}^m (\mathbf{u})_i \mathbf{x}^i = \mathbf{A}^\top \mathbf{u},$$

where $\mathbf{A} = [\mathbf{x}^1, \mathbf{x}^2, ..., \mathbf{x}^m]^\top$ is the training data matrix.

- Now, we only need to find the solution of **u** and *b*.
- We let $\mathbf{w}^t = \mathbf{A}^\top \mathbf{u}^t$ and b_t be the current classifier

・ 同 ト ・ ヨ ト ・ ヨ ト ・

The Passive and Aggressive Algorithm in the Dual Form

We substitute w and w^t in the minimization problem of PA,

$$\min_{(\mathbf{u},b)\in\mathbb{R}^{m+1}} \frac{1}{2} (\mathbf{u}^{\top} A A^{\top} \mathbf{u} + b^2) - (\mathbf{u}^{t^{\top}} A A^{\top} \mathbf{u} + bb_t) \quad (5)$$

・ 回 と ・ ヨ と ・ ヨ と

s.t.
$$1 - y_t(\mathbf{u}^\top A \mathbf{x}^t + b) \leq 0$$
,

- The PA can be reformulated in terms of inner products between the data points.
- We can extend to the nonlinear version by utilizing the "kernel trick".

Kernel PA Closed Form Updating

We derive the closed form updating rules for KPA as follows:

$$\mathbf{u}^{t+1} = \mathbf{u}^t + \alpha_t \mathbf{y}_t K(\mathbf{A}, \mathbf{A}^\top)^{-1} K(\mathbf{A}, \mathbf{x}^t)$$

$$b_{t+1} = b_t + \alpha_t \mathbf{y}_t,$$
(6)

イロト イポト イヨト イヨ

where ℓ_t is the loss suffered on round *t* and α_t is defined as

$$\alpha_t = \frac{\ell_t}{K(\boldsymbol{A}, \boldsymbol{x}^t)^\top K(\boldsymbol{A}, \boldsymbol{A}^\top)^{-1} K(\boldsymbol{A}, \boldsymbol{x}^t) + 1}$$

Can't be used in online manner

Reduced Kernel Trick can help here!

Kernel PA Closed Form Updating

We derive the closed form updating rules for KPA as follows:

$$\mathbf{u}^{t+1} = \mathbf{u}^t + \alpha_t \mathbf{y}_t K(\mathbf{A}, \mathbf{A}^\top)^{-1} K(\mathbf{A}, \mathbf{x}^t)$$

$$b_{t+1} = b_t + \alpha_t \mathbf{y}_t,$$
(6)

where ℓ_t is the loss suffered on round *t* and α_t is defined as

$$\alpha_t = \frac{\ell_t}{K(\boldsymbol{A}, \boldsymbol{x}^t)^\top K(\boldsymbol{A}, \boldsymbol{A}^\top)^{-1} K(\boldsymbol{A}, \boldsymbol{x}^t) + 1}$$

Can't be used in online manner

Reduced Kernel Trick can help here!

Sketch of Reduced Kernel PA

- Preselect a small subset $\widetilde{S} = \{(\widetilde{x}^i, \widetilde{y}_i) | i = 1, \dots, \widetilde{m}\}$
- Generate $K(\widetilde{A}, \widetilde{A}^{\top})^{-1}$ and substitute $K(A, A^{\top})^{-1}$ in KPA
- For numerical robustness, we can add a small regularization term *ϵ*I,

$$K(\widetilde{A},\widetilde{A}^{\top})_{\epsilon} = K(\widetilde{A},\widetilde{A}^{\top}) + \epsilon \mathbf{I},$$

- Diagonalize $K(\widetilde{A},\widetilde{A}^{\top})_{\epsilon}^{-1} = PVP^{\top} = (PV^{\frac{1}{2}})(PV^{\frac{1}{2}})^{\top}$
- Change variables, letting

$$\mathbf{z} = (PV^{\frac{1}{2}})^{\top} \widetilde{\mathbf{u}}, \quad \mathbf{z}^{t} = (PV^{\frac{1}{2}})^{\top} \widetilde{\mathbf{u}^{t}},$$

and

$$\widehat{K}(\widetilde{A},\mathbf{x}^{t})=(PV^{\frac{1}{2}})^{\top}K(\widetilde{A},\mathbf{x}^{t})$$

Final Formulation of RKPA

• Then the Reduced Kernel PA can be rewritten as follows:

$$\min_{(\mathbf{z},b)\in\mathbb{R}^{\widetilde{m}+1}} \frac{1}{2} [\mathbf{z}^{\top}\mathbf{z} + b^2] - [\mathbf{z}^{t^{\top}}\mathbf{z} + bb_t]$$
(7)

ヘロト 人間 ト ヘヨト ヘヨト

s.t.
$$1 - y_t[\mathbf{z}^\top V^{-1}\widehat{K}(\widetilde{A}, \mathbf{x}^t) + b] \leq 0,$$

and the decision function becomes

$$f(\mathbf{x}) = \mathbf{z}^\top V^{-1} \widehat{K}(\widetilde{A}, \mathbf{x}^t) + b.$$

 It is straightforward to obtain the minimization problems defining Reduced Kernel PA-1 (RKPA-1) and Reduced Kernel PA-2 (RKPA-2).

RKPA Updating Rules:

•
$$\mathbf{z}^{t+1} = \mathbf{z}^t + \alpha_t \mathbf{y}_t \mathbf{V}^{-1} \widehat{\mathbf{K}}(\widetilde{\mathbf{A}}, \mathbf{x}^t), \ \mathbf{b}_{t+1} = \mathbf{b}_t + \alpha_t \mathbf{y}_t$$

$$\alpha_{t} = \begin{cases} \frac{\ell_{t}}{\left\| V^{-1} \widehat{K}(\widetilde{A}, \mathbf{x}^{t}) \right\|^{2} + 1} & (\mathsf{RKPA}) \\ \min\{C, \frac{\ell_{t}}{\left\| V^{-1} \widehat{K}(\widetilde{A}, \mathbf{x}^{t}) \right\|^{2} + 1} \} & (\mathsf{RKPA-1}) & , \quad (8) \\ \frac{\ell_{t}}{\left\| V^{-1} \widehat{K}(\widetilde{A}, \mathbf{x}^{t}) \right\|^{2} + 1 + \frac{1}{2C}} & (\mathsf{RKPA-2}) \end{cases}$$

where ℓ_t is the loss suffered on round *t*.

 We no longer need to calculate the inverse of K(A, A^T), only that of V, the inverse of V is trivial to calculate.

Reduced Kernel Fisher Discriminant Analysis (RKFDA)

- KFDA is a kernelized version of LDA.
- To be able to handle large-scale datasets, we also introduce the reduced kernel trick, then the solution of RKFDA is of the form

$$\widetilde{\mathbf{u}}_{\rho} = \left[\text{COV}(\mathcal{K}(\mathcal{A}_{\rho}, \widetilde{\mathcal{A}}^{\top})) + \text{COV}(\mathcal{K}(\mathcal{A}_{N}, \widetilde{\mathcal{A}}^{\top})) \right]^{-1} (\widetilde{\mathcal{M}_{\rho}} - \widetilde{\mathcal{M}_{N}}),$$

where A_P and A_N are, respectively, the positive data and negative data;, \widetilde{M}_P and \widetilde{M}_N are their respective mean vectors of reduced kernel data.

Online Nonlinear SVM Classifier

RKPAm: RKPA+quasi-KFD

$$\mathbf{z}^{t+1} = \mathbf{z}^t + \gamma \mathbf{z}_p^t + \alpha_t \mathbf{y}_t \mathbf{V}^{-1} \widehat{\mathbf{K}}(\widetilde{\mathbf{A}}, \mathbf{x}^t)$$

$$\mathbf{b}_{t+1} = \mathbf{b}_t + \gamma \mathbf{b}_p^t + \alpha_t \mathbf{y}_t$$
(9)

$$\alpha_{t} = \begin{cases} \frac{\ell_{t} - y_{t}\gamma(\mathbf{z}_{p}^{t^{\top}}V^{-1}\widehat{K}(\widetilde{A}, \mathbf{x}^{t}) + b_{p}^{t})}{\left\|V^{-1}\widehat{K}(\widetilde{A}, \mathbf{x}^{t})\right\|^{2} + 1} & (\text{RKPAm}) \\ \min\{C, \frac{\ell_{t} - y_{t}\gamma(\mathbf{z}_{p}^{t^{\top}}V^{-1}\widehat{K}(\widetilde{A}, \mathbf{x}^{t}) + b_{p}^{t})}{\left\|V^{-1}\widehat{K}(\widetilde{A}, \mathbf{x}^{t})\right\|^{2} + 1} & (\text{RKPAm-1}) \\ \frac{\ell_{t} - y_{t}\gamma(\mathbf{z}_{p}^{t^{\top}}V^{-1}\widehat{K}(\widetilde{A}, \mathbf{x}^{t}) + b_{p}^{t})}{\left\|V^{-1}\widehat{K}(\widetilde{A}, \mathbf{x}^{t})\right\|^{2} + 1 + \frac{1}{2C}} & (\text{RKPAm-2}) \end{cases}$$

Yuh-Jye Lee Joint work with Y.-C. Tseng and I.-F. Chen Online Nonlinear SVM for Large-Scale Classification

Numerical Results

Outline

- Machine Learning vs. Optimization
- 2 Online Learning Algorithm (Linear)
 - Perceptron Algorithm
 - Passive and Aggressive (PA) Algorithm
 - PA Algorithm with a Proximal Classifier
- Online Nonlinear SVM Classifier

Numerical Results

- Experiment: Linear vs. Nonlinear
- Experiment: Proximal Model vs. without Proximal Model

・ 同 ト ・ ヨ ト ・ ヨ ト

5 Conclusions

Numerical Results

Experiment: Linear vs. Nonlinear

Experimental Objective and Setting

- Objective:
 - Linear model (PA) vs. Nonlinear model (RKPA)
 - Sensitive to the input order.
- In our experiment, the results of the RKPA, RKPA-1 and RKPA-2 were compared with the PA, PA-1 and PA-2, respectively.
- We run a single pass of the PA algorithm and RKPA algorithm 10 times with different input orders each time.
- For nonlinear model, we use the Gaussian kernel.
- We compare the results on 8 datasets. The sizes of these datasets range from small-scale, medium-scale to large-scale. Table 1 summarizes the statistics of the datasets.

Numerical Results

Experiment: Linear vs. Nonlinear

The Summary of Datasets

Table: The statistics of the datasets used in the experiment.

Dataset	Training	Testing	Features
svmguide1	3,089	4,000	4
w3a	4,912	44,837	300
a9a	32,561	16,281	123
ijcnn1	35,000	91,701	22
Cod-rna	59,535	271,617	8
usps01	266,079	75,383	676
covertype	522,910	58,102	54
Checkerboard	1,000,000	2,000	2

イロト イポト イヨト イヨト

Numerical Results

Experiment: Linear vs. Nonlinear

Comparison of Testing Error Rate over 10 Runs

Table: The comparison of average testing error rate and the standard deviation (%).

	Linear SSVM	' I	PA	RK	(PA	P/	\-1	RKI	PA-1	' P/	\-2	RKF	PA-2
dataset	batch	avg	(std)	avg	(std)	avg	(std)	avg	(std)	avg	(std)	avg	(std)
svmguide1	4.33	14.21	(8.04)	4.37	(0.70)	10.00	(6.59)	3.62	(0.15)	10.05	(5.17)	3.61	(0.27)
w3a	1.67	, 10.49	(11.60)	2.93	(0.50)	2.14	(0.08)	2.83	(0.11)	2.11	(0.08)	2.81	(0.13)
a9a	14.88	21.01	(3.56)	19.54	(3.62)	15.25	(0.14)	15.19	(0.29)	15.22	(0.15)	15.15	(0.31)
ijcnn1	8.68	14.10	(4.86)	6.58	(1.48)	8.67	(0.15)	5.00	(0.78)	8.97	(0.05)	5.21	(0.80)
Cod-rna	4.83	10.33	(8.07)	6.24	(2.01)	5.57	(0.81)	4.28	(0.48)	6.14	(1.67)	4.46	(0.61)
usps01	3.35	4.88	(0.79)	0.57	(0.07)	3.62	(0.08)	0.57	(0.07)	3.61	(0.07)	0.57	(0.07)
covertype	24.52	34.56	(3.62)	12.04	(2.10)	24.11	(0.20)	10.77	(0.66)	24.81	(0.19)	10.96	(0.89)
Checkerboard	50.65	50.83	(2.33)	1.07	(0.23)	48.63	(2.81)	0.90	(0.11)	48.22	(2.58)	0.83	(0.14)

Yuh-Jye Lee Joint work with Y.-C. Tseng and I.-F. Chen Online Nonlinear SVM for Large-Scale Classification

ヘロト ヘアト ヘビト ヘビト

э

Numerical Results

Experiment: Proximal Model vs. without Proximal Model

Comparison of Testing Error Rate over 10 Runs: RKPA vs. RKPAm

Table: The comparison of average testing error rate and the standard deviation (%).

	R	(PA	RKI	PAm	RKI	(PA-1 R		RKPAm-1		PA-2	RKP	Am-2
dataset	avg	(std)										
svmguide1	4.37	(0.70)	3.73	(0.54)	3.62	(0.15)	3.43	(0.15)	3.61	(0.27)	3.36	(0.22)
w3a	2.93	(0.50)	2.71	(0.57)	2.83	(0.11)	2.62	(0.12)	2.81	(0.13)	2.63	(0.16)
a9a	19.54	(3.62)	19.51	(3.69)	15.19	(0.29)	15.17	(0.22)	15.15	(0.31)	15.14	(0.30)
ijcnn1	6.58	(1.48)	3.63	(0.69)	5.00	(0.78)	3.64	(0.73)	5.21	(0.80)	3.64	(0.73)
Cod-rna	6.24	(2.01)	5.64	(1.15)	4.28	(0.48)	4.23	(0.47)	4.46	(0.61)	4.38	(0.59)
usps01	0.57	(0.07)	0.54	(0.06)	0.57	(0.07)	0.54	(0.06)	0.57	(0.07)	0.54	(0.06)
covertype	12.04	(2.10)	15.10	(3.97)	10.77	(0.66)	10.38	(0.55)	10.96	(0.89)	10.74	(0.83)
Checkerboard	1.07	(0.23)	0.82	(0.18)	0.90	(0.11)	0.83	(0.17)	0.83	(0.14)	0.78	(0.14)

Yuh-Jye Lee Joint work with Y.-C. Tseng and I.-F. Chen Online Nonlinear SVM for Large-Scale Classification

(< ∃) < ∃)</p>

< 🗇 🕨

Numerical Results

Experiment: Proximal Model vs. without Proximal Model

Comparison of Average Running Time over 10 Runs

Table: Comparison of average training time (sec.).

	RKPA	RKPAm	RKPA-1	RKPAm-1	RKPA-2	RKPAm-2
svmguide1	0.53	0.57	0.50	0.59	0.52	0.62
w3a	0.66	0.74	0.66	0.79	0.68	0.80
a9a	1.76	3.56	1.68	3.43	1.74	4.20
ijcnn1	4.46	5.54	4.42	5.52	4.53	5.84
Cod-rna	7.57	9.64	7.24	9.85	7.43	11.81
usps01	52.11	58.01	53.07	57.41	52.52	57.51
covertype	5127.77	5294.39	5128.12	5357.68	5131.65	5398.59
Checkerboard	12.81	16.38	13.21	16.80	13.92	18.75

Yuh-Jye Lee Joint work with Y.-C. Tseng and I.-F. Chen Online Nonlinear SVM for Large-Scale Classification

ヘロト ヘアト ヘビト ヘビト

ъ

Outline

- 1 Machine Learning vs. Optimization
- 2 Online Learning Algorithm (Linear)
 - Perceptron Algorithm
 - Passive and Aggressive (PA) Algorithm
 - PA Algorithm with a Proximal Classifier
- Online Nonlinear SVM Classifier
- Numerical Results
 - Experiment: Linear vs. Nonlinear
 - Experiment: Proximal Model vs. without Proximal Model

・ 同 ト ・ ヨ ト ・ ヨ ト

5 Conclusions

Conclusions

- We used the online learning framework to solve large-scale binary classification problem
- We derived a set of update schemes (linear and nonlinear) in closed form for PAm, RKPAm
- Compared to the conventional PA algorithm, utilizing the proximal classifier will have
 - Less sensitive to the input order
 - Less number of updating made in a single pass
 - Higher similarity between two consecutive epochs resulting classifiers

イロト イポト イヨト イヨト

Conclusions

- We used the online learning framework to solve large-scale binary classification problem
- We derived a set of update schemes (linear and nonlinear) in closed form for PAm, RKPAm
- Compared to the conventional PA algorithm, utilizing the proximal classifier will have
 - Less sensitive to the input order
 - Less number of updating made in a single pass
 - Higher similarity between two consecutive epochs resulting classifiers

ヘロト ヘワト ヘビト ヘビト

- We used the online learning framework to solve large-scale binary classification problem
- We derived a set of update schemes (linear and nonlinear) in closed form for PAm, RKPAm
- Compared to the conventional PA algorithm, utilizing the proximal classifier will have
 - Less sensitive to the input order
 - Less number of updating made in a single pass
 - Higher similarity between two consecutive epochs resulting classifiers

ヘロト ヘワト ヘビト ヘビト

- We used the online learning framework to solve large-scale binary classification problem
- We derived a set of update schemes (linear and nonlinear) in closed form for PAm, RKPAm
- Compared to the conventional PA algorithm, utilizing the proximal classifier will have
 - Less sensitive to the input order
 - Less number of updating made in a single pass
 - Higher similarity between two consecutive epochs resulting classifiers

ヘロト ヘワト ヘビト ヘビト

- We used the online learning framework to solve large-scale binary classification problem
- We derived a set of update schemes (linear and nonlinear) in closed form for PAm, RKPAm
- Compared to the conventional PA algorithm, utilizing the proximal classifier will have
 - Less sensitive to the input order
 - Less number of updating made in a single pass
 - Higher similarity between two consecutive epochs resulting classifiers

イロト イポト イヨト イヨト

- We used the online learning framework to solve large-scale binary classification problem
- We derived a set of update schemes (linear and nonlinear) in closed form for PAm, RKPAm
- Compared to the conventional PA algorithm, utilizing the proximal classifier will have
 - Less sensitive to the input order
 - Less number of updating made in a single pass
 - Higher similarity between two consecutive epochs resulting classifiers

イロト イポト イヨト イヨト

- We used the online learning framework to solve large-scale binary classification problem
- We derived a set of update schemes (linear and nonlinear) in closed form for PAm, RKPAm
- Compared to the conventional PA algorithm, utilizing the proximal classifier will have
 - Less sensitive to the input order
 - Less number of updating made in a single pass
 - Higher similarity between two consecutive epochs resulting classifiers

イロト イポト イヨト イヨト

Reference

- Léon Bottou and Olivier Bousquet. The Tradeoffs of Large Scale Learning. Advances in Neural Information Processing Systems, 20:161–168, 2008
- - John Langford. *Concerns about the Large Scale Learning Challenge*, 2008
- K. Crammer et al. Online passive-aggressive algorithms. *Journal of Machine Learning Research*, 7:551–585, 2006.
- K. Hiraoka et al. Convergence analysis of online linear discriminant analysis. *In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks*, 3:387–391, Como, Italy, 2000.
- L. I. Kuncheva and C. O. Plumpton. Adaptive learning rate for online linear discriminant classifiers. *Structural, Syntactic, and Statistical Pattern Recognition*, 5342:510–519, 2008.

<ロト <問 > < 臣 > < 臣 >
Conclusions

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Conclusions

Thank you !

Yuh-Jye Lee Joint work with Y.-C. Tseng and I.-F. Chen Online Nonlinear SVM for Large-Scale Classification

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○