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The Plan of My Lecture

Focus on Supervised Learning mainly (30minutes)

Many examples
Basic Concept of Learning Theorey

Will give you three basic algorithms (80minutes)

k-Nearest Neighbor
Naive Bayes Classifier
Online Perceptron Algorithm

Brief Introduction to Optimization (90minutes)

Support Vector Machines (90minutes)

Evaluation and Closed Remarks (70minutes)
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Some Examples

AlphaGo and Master
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Some Examples

Mayhem Wins DARPA Cyber Grand Challenge
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Some Examples

Supervised Learning Problems

Assumption: training instances are drawn from an unknown but fixed
probability distribution P(x, y) independently.

Our learning task:

Given a training set S = {(x1, y1), (x2, y2), . . . , (x`, y`)}
We would like to construct a rule, f (x) that can correctly
predict the label y given unseen x
If f (x) 6= y then we get some loss or penalty
For example: `(f (x), y) = 1

2 |f (x)− y |
Learning examples: classification, regression and sequence labeling

If y is drawn from a finite set it will be a classification
problem. The simplest case: y ∈ {−1, + 1} called binary
classification problem
If y is a real number it becomes a regression problem
More general case, y can be a vector and each element is
drawn from a finite set. This is the sequence labeling problem
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Some Examples

Binary Classification Problem
(A Fundamental Problem in Data Mining)

Find a decision function (classifier) to discriminate two
categories data set.

Supervised learning in Machine Learning

Decision Tree, Deep Neural Network, k-NN and Support
Vector Machines, etc.

Discrimination Analysis in Statistics

Fisher Linear Discriminator

Successful applications:

Cyber Security, Marketing, Bioinformatics, Fraud detection
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Some Examples

Bankruptcy Prediction: Solvent vs. Bankrupt
A Binary Classification Problem

Deutsche Bank Dataset

40 financial indicators, (x part), from middle-market
capitalization 422 firms in Benelux.

74 firms went bankrupt and 348 were solvent. (y part)

The variables to be used in the model as explanatory inputs
are 40 financial indicators such as: liquidity, profitability and
solvency measurements.

Machine Learning will identify the most important indicators

W. Härdle, Y.-J. Lee, D. Schäfer, Dorothea and Y.-R. Yeh, “Variable

selection and oversampling in the use of smooth support vector machines

for predicting the default risk of companies”, Journal of Forecasting, vol

28, (6), p. 512 - 534, 2009
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Some Examples

Binary Classification Problem

Given a training dataset

S = {(xi , yi )|xi ∈ Rn, yi ∈ {−1, 1}, i = 1, . . . , `}

xi ∈ A+ ⇔ yi = 1 & xi ∈ A− ⇔ yi = −1

Main Goal:

Predict the unseen class label for new data

Estimate a posteriori probability of class label

Pr(y = 1|x) > Pr(y = −1|x) ⇒ x ∈ A+

Find a function f : Rn → R by learning from data

f (x) ≥ 0⇒ x ∈ A+ and f (x) < 0⇒ x ∈ A−

The simplest function is linear: f (x) = w>x + b
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Basic concept of learning theory

Goal of Learning Algorithms

The early learning algorithms were designed to find such an
accurate fit to the data.

At that time, the training set size is relative small

A classifier is said to be consistent if it performed the correct
classification of the training data.

Please note that it is NOT our learning purpose

The ability of a classifier to correctly classify data not in the
training set is known as its generalization.

Bible code? 1994 Taipei Mayor election?

Predict the real future NOT fitting the data in your hand or
predict the desired results.
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Three Fundamental Algorithms

Näıve Bayes Classifier
Based on Bayes’ Rule

k-Nearest Neighbors Algorithm
Distance and Instances based algorithm
Lazy learning

Online Perceptron Algorithm
Mistakes driven algorithm
The smallest unit of Deep Neural Networks
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Conditional Probability

Definition

The conditional probability of an event A, given that an event B
has occurred, is equal to

P(A|B) =
P(A ∩ B)

P(B)

Example
Suppose that a fair die is tossed once. Find the probability of
a 1 (event A), given an odd number was obtained (event B).

P(A|B) =
P(A ∩ B)

P(B)
=

1/6

1/2
=

1

3

Restrict the sample space on the event B
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Partition Theorem

Assume that {B1,B2, . . . ,Bk} is a partition of S such that
P(Bi ) > 0, for i = 1, 2, . . . , k. Then

P(A) =
k∑

i=1

P(A|Bi )P(Bi ). A ∩B1

A ∩B2

A ∩B3

B1
B2

B3

S

Note that {B1,B2, . . . ,Bk} is a partition of S if
1 S = B1 ∪ B2 ∪ . . . ∪ Bk

2 Bi ∩ Bj = ∅ for i 6= j
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Bayes’ Rule

Bayes’ Rule

Assume that {B1,B2, . . . ,Bk} is a partition of S such that
P(Bi ) > 0, for i = 1, 2, . . . , k. Then

P(Bj |A) =
P(A|Bj)P(Bj)
k∑

i=1
P(A|Bi )P(Bi )

.
A ∩B1

A ∩B2

A ∩B3

B1
B2

B3

S
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Näıve Bayes for Classification
Also Good for Multi-class Classification

Estimate a posteriori probability of class label

Let each attribute (variable) be a random variable. What is
the probibility of

Pr(y = 1|x) = Pr(y = 1|X1 = x1,X2 = x2, . . . ,Xn = xn)

Näıve Bayes TWO not reasonable assumptions:

The importance of each attribute is equal
All attributes are conditional probability independent !

Pr(y = 1|x) =
1

Pr(X = x)

n∏
i=1

Pr(y = 1|Xi = xi )
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The Weather Data Example
Ian H. Witten & Eibe Frank, Data Mining

Outlook Temperature Humidity Windy Play(Label)

Sunny Hot High False -1
Sunny Hot High True -1

Overcast Hot High False +1
Rainy Mild High False +1
Rainy Cool Normal False +1
Rainy Cool Normal True -1

Overcast Cool Normal True +1
Sunny Mild High False -1
Sunny Cool Normal False +1
Rainy Mild Normal False +1
Sunny Mild Normal True +1

Overcast Mild High True +1
Overcast Hot Normal False +1

Rainy Mild High True -1
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Probabilities for Weather Data
Using Maximum Likelihood Estimation

Outlook Temp. Humidity Windy Play
Play Yes No Yes No Yes No Yes No Yes No

Sunny
Overcast
Rainy

2/9
4/9
3/9

3/5
0/5
2/5

Hot
Mild
Cool

2/9
4/9
3/9

2/5
3/5
1/5

High
Normal

3/9
6/9

4/5
1/5

T
F

3/9
6/9

3/5
2/5

9/14 5/14

Likelihood of the two classes:

Pr(y = 1|sunny , cool , high, T ) ∝ 2

9
· 3

9
· 3

9
· 3

9
· 9

14

Pr(y = −1|sunny , cool , high, T ) ∝ 3

5
· 1

5
· 4

5
· 3

5
· 5

14
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Zero-frequency Problem

What if an attribute value does NOT occur with a class
value?

The posterior probability will all be zero! No matter how likely
the other attribute values are!

Laplace estimator will fix “zero-frequency”,
k + λ

n + aλ
Question: Roll a dice 8 times. The outcomes are as:
2, 5, 6, 2, 1, 5, 3, 6. What is the probability for showing 4?

Pr(X = 4) =
0 + λ

8 + 6λ
, Pr(X = 5) =

2 + λ

8 + 6λ
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Instance-based Learning: k-nearest neighbor algorithm

Fundamental philosophy: Two instances that are close to each
other or similar to each other they should share with the
same label

Also known as memory-based learning since what they do is
store the training instances in a lookup table and interpolate
from these.

It requires memory of O(N)

Given an input similar ones should be found and finding them
requires computation of O(N)

Such methods are also called lazy learning algorithms.
Because they do NOT compute a model when they are given
a training set but postpone the computation of the model
until they are given a new test instance (query point)
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k-Nearest Neighbors Classifier

Given a query point xo , we find the k training points
x(i), i = 1, 2, . . . , k closest in distance to xo

Then classify using majority vote among these k neighbors.

Choose k as an odd number will avoid the tie. Ties are broken
at random

If all attributes (features) are real-valued, we can use
Euclidean distance. That is d(x, xo) = ‖x− xo‖2

If the attribute values are discrete, we can use Hamming
distance, which counts the number of nonmatching attributes

d(x, xo) =
n∑

j=1

1(xj 6= xoj )
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1-Nearest Neighbor Decision Boundary (Voronoi)
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Distance Measure

Using different distance measurements will give very different
results in k-NN algorithm.

Be careful when you compute the distance

We might need to normalize the scale between different
attributes. For example, yearly income vs. daily spend

Typically we first standardize each of the attributes to have
mean zero and variance 1

x̂j =
xj − µj
σj
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Learning Distance Measure

Finding a distance function d(xi , xj) such that if xi and xj are
belong to the class the distance is small and if they are
belong to the different classes the distance is large.

Euclidean distance: ‖xi − xj‖2
2 = (xi − xj)>(xi − xj)

Mahalanobis distance: d(xi , xj) = (xi − xj)>M(xi − xj) where
M is a positive semi-definited matrix.

(xi − xj)>M(xi − xj) = (xi − xj)>L>L(xi − xj)

= (Lxi − Lxj)>(Lxi − Lxj)

The matrix L can be with the size k × n and k << n
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Linear Learning Machines

The simplest function is linear: f (x) = w>x + b

Finding this simplest function via an on-line and
mistake-driven procedure

Update the weight vector and bias when there is a
misclassified point
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Binary Classification Problem
Linearly Separable Case

x>w + b = 0

x>w + b = −1

x>w + b = +1

A-

Malignant

A+

Benign

w
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Online Learning

Definition of online learning

Given a set of new training data,

Online learner can update its model without reading old data while
improving its performance.

In contrast, off-line learner must combine old and new data and start
the learning all over again, otherwise the performance will suffer.

Online is considered as a solution of large learning tasks

Usually require several passes (or epochs) through the training
instances

Need to keep all instances unless we only run the algorithm one
single pass
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Perceptron Algorithm (Primal Form)
Rosenblatt, 1956

Given a training dataset S , and initial weight vector w0 = 0
and the bias b0 = 0
Repeat:
for i = 1 to `

if yi (〈wk · xi 〉+ bk) ≤ 0 then
wk+1 ← wk + ηyix

i

bk+1 ← bk + ηyiR
2 R = max

1≤i≤`
‖xi‖

k ← k + 1
end if

Until no mistakes made within the for loop
Return: k , (wk , bk).

What is k ?
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yi(〈w k+1 · xi〉+ bk+1) > yi(〈w k · xi〉) + bk ?
w k+1 ←− w k + ηyixi and bk+1 ←− bk + ηyiR

2

yi (〈wk+1 · xi 〉+ bk+1) = yi (〈(wk + ηyix
i ) · xi 〉+ bk + ηyiR

2)

= yi (〈wk · xi 〉+ bk) + yi (ηyi (〈xi · xi 〉+ R2))

= yi (〈wk · xi 〉+ bk) + η(〈xi · xi 〉+ R2)

R = max
1≤i≤`

‖xi‖
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Perceptron Algorithm Stop in Finite Steps

Theorem(Novikoff)
Let S be a non-trivial training set, and let

R = max
1≤i≤`

‖xi‖

Suppose that there exists a vector wopt such that ‖wopt‖ = 1 and

yi (〈wopt · xi 〉+ bopt) ≥ γ for 1 ≤ i ≤ `.

Then the number of mistakes made by the on-line perceptron
algorithm on S is almost ( 2R

γ )2.
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Perceptron Algorithm (Dual Form)

w =
∑̀
i=1

αiyixi

Given a linearly separable training set S and α = 0 , α ∈ R` ,
b = 0 , R = max

1≤i≤`
‖xi‖.

Repeat: for i = 1 to `

if yi (
∑̀
j=1

αjyj〈xj · xi 〉+ b) ≤ 0 then

αi ← αi + 1 ; b ← b + yiR
2

end if
end for

Until no mistakes made within the for loop return: (α, b)
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What We Got in the Dual Form of Perceptron Algorithm?

The number of updates equals:
∑̀
i=1

αi = ‖α‖1 ≤ ( 2R
γ )2

αi > 0 implies that the training point (xi , yi ) has been
misclassified in the training process at least once.

αi = 0 implies that removing the training point (xi , yi ) will
not affect the final results.

The training data only appear in the algorithm through the
entries of the Gram matrix,G ∈ R`×` which is defined below:

Gij = 〈xi , xj〉
The key idea of kernel trick in SVMs and all kernel methods
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You Have Learned (Unconstrained)
Optimization in Your High School

Let f (x) = ax2 + bx + c, a 6= 0, x∗ = − b
2a

Case 1 : f ′′(x∗) = 2a > 0⇒ x∗ ∈ arg min
x∈R

f (x)

Case 2 : f ′′(x∗) = 2a < 0⇒ x∗ ∈ arg max
x∈R

f (x)

For minimization problem (Case I),

f ′(x∗) = 0 is called the first order optimality condition.

f ′′(x∗) > 0 is the second order optimality condition.
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Gradient and Hessian

Let f : Rn → R be a differentiable function. The gradient of
function f at a point x ∈ Rn is defined as

∇f (x) = [
∂f (x)

∂x1
,
∂f (x)

∂x2
, . . . ,

∂f (x)

∂xn
] ∈ Rn

If f : Rn → R is a twice differentiable function. The Hessian
matrix of f at a point x ∈ Rn is defined as

∇2f (x) =


∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n

 ∈ Rn×n
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Example of Gradient and Hessian

f (x) = x2
1 + x2

2 − 2x1 + 4x2

=
1

2

[
x1 x2

] [2 0
0 2

] [
x1

x2

]
+
[
−2 4

] [x1

x2

]

∇f (x) =
[
2x1 − 2 2x2 + 4

]
,∇2f (x) =

[
2 0
0 2

]
By letting ∇f (x) = 0, we have x∗ =

[
1
−2

]
∈ arg min

x∈R2
f (x)
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Quadratic Functions (Standard Form)
f (x) = 1

2x
>Hx + p>x

Let f : Rn → R and f (x) = 1
2x
>Hx + p>x

where H ∈ Rn×n is a symmetric matrix and p ∈ Rn

then
∇f (x) = Hx + p

∇2f (x) = H (Hessian)

Note: If H is positive definite, then x∗ = −H−1p is the unique
solution of min f (x).
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Least-squares Problem
min
x∈Rn
‖Ax − b‖2

2, A ∈ Rm×n, b ∈ Rm

f (x) = (Ax − b)>(Ax − b)

= x>A>Ax − 2b>Ax + b>b

∇f (x) = 2A>Ax − 2A>b

∇2f (x) = 2A>A

x∗ = (A>A)−1A>b ∈ arg min
x∈Rn
‖Ax − b‖2

2

If A>A is nonsingular matrix ⇒ P.D.
Note : x∗ is an analytical solution.
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How to Solve an Unconstrained MP

Get an initial point and iteratively decrease the obj. function
value.

Stop once the stopping criteria is satisfied.

Steep decent might not be a good choice.

Newtons method is highly recommended.

Local and quadratic convergent algorithm.
Need to choose a good step size to guarantee global
convergence.
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The First Order Taylor Expansion

Let f : Rn → R be a differentiable function

f (x + d) = f (x) +∇f (x)>d + α(x , d)‖d‖,

where
lim
d→0

α(x , d) = 0

If ∇f (x)>d < 0 and d is small enough then f (x + d) < f (x).

We call d is a descent direction.
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Steep Descent with Exact Line Search

Start with any x0 ∈ Rn. Having x i , stop if ∇f (x i ) = 0.
Else compute x i+1 as follows:

1 Steep descent direction: d i = −∇f (x i )

2 Exact line search: Choose a stepsize such that

df (x i + λd i )

dλ
= f ′(x i + λd i ) = 0

3 Updating: x i+1 = x i + λd i
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MATLAB Code for Steep Descent with Exact Line Search
(Quadratic Function Only)

function [x , f value, iter ] = grdlines(Q, p, x0, esp)
%
% min 0.5 ∗ x>Qx + p>x
% Solving unconstrained minimization via
% steep descent with exact line search
%
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flag = 1;
iter = 0;
while flag > esp

grad = Qx0+p;
temp1 = grad’*grad;
if temp1 < 10−12

flag = esp;
else

stepsize = temp1/(grad’*Q*grad);
x1 = x0 - stepsize*grad;
flag = norm(x1-x0);
x0 = x1;

end;
iter = iter + 1;

end;
x = x0;
fvalue = 0.5*x’*Q*x+p’*x;
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The Key Idea of Newton’s Method

Let f : Rn −→ R be a twice differentiable function

f (x + d) = f (x) +∇f (x)>d +
1

2
d>∇2f (x)d + β(x , d) ‖ d ‖

where lim
d→0

β(x , d) = 0

At i th iteration, use a quadratic function to approximate

f (x) ≈ f (x i ) +∇f (x i )(x − x i ) +
1

2
(x − x i )>∇2f (x i )(x − x i )

x i+1 = arg min f̃ (x)
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Newton’s Method

Start with x0 ∈ Rn. Having x i ,stop if ∇f (x i ) = 0
Else compute x i+1 as follows:

1 Newton direction: ∇2f (x i )d i = −∇f (x i )
Have to solve a system of linear equations here!

2 Updating: x i+1 = x i + d i

Converge only when x0 is close to x∗ enough.
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It can not converge to the optimal solution.

f(x) = à 6
1x 6 + 4

1x 4 + 2x 2

g(x) = f(xi) + f0(xi)(x à xi) + 2
1 f00(xi)(x à xi)

f (x) = 1
6x

6 + 1
4x

4 + 2x2

g(x) = f (x i ) + f ′(x i )(x − x i ) + 1
2 f
′′(x i )(x − x i )2

It can not converge to the optimal solution.
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People of ACM: David Blei, (Sept. 9, 2014)

The recipient of the 2013 ACM- Infosys Foundation Award in the
Computing Sciences, he is joining Columbia University this fall as a
Professor of Statistics and Computer Science, and will become a
member of Columbia’s Institute for Data Sciences and Engineering.
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What is the most important recent innovation in machine
learning?

[A]: One of the main recent innovations in ML research has been
that we (the ML community) can now scale up our algorithms to
massive data, and I think that this has fueled the modern
renaissance of ML ideas in industry. The main idea is called
stochastic optimization, which is an adaptation of an old algorithm
invented by statisticians in the 1950s.
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What is the most important recent innovation in machine
learning?

[A]: In short, many machine learning problems can be boiled down
to trying to find parameters that maximize (or minimize) a
function. A common way to do this is “gradient ascent,”
iteratively following the steepest direction to climb a function to its
top. This technique requires repeatedly calculating the steepest
direction, and the problem is that this calculation can be
expensive. Stochastic optimization lets us use cheaper approximate
calculations. It has transformed modern machine learning.
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Gradient Descent: Batch Learning

For an optimization problem

min f (w) = min r(w) +
1

`

∑̀
i=1

`(w; (xi , yi ))

GD tries to find a direction and the learning rate decreasing the objective
function value.

wt+1 = wt − η∇f (wt)

where η is the learning rate, −∇f (wt) is the steepest direction

∇f (wt) = ∇r(wt) +
1

`

∑̀
i=1

∇`(wt ; (xi , yi ))

When ` is large, computing
∑̀
i=1

∇`(wt ; (xi , yi )) may cost much time.
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Stochastic Gradient Descent: Online Learning

In GD, we compute the gradient using the entire training set.

In stochastic gradient descent(SGD), we use

∇`(wt ; (xt , yt)) instead of
1

`

∑̀
i=1

∇`(wt ; (xi , yi ))

So the gradient of f (wt)

∇f (wt) = ∇r(wt) +∇`(wt ; (xt , yt))

SGD computes the gradient using only one instance.

In experiment, SGD is significantly faster than GD when ` is large.
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Online Perceptron Algorithm [Rosenblatt, 1956]

The Perceptron is considered as a SGD method. The underlying
optimization problem of the algorithm

min
(w,b)∈Rn+1

∑̀
i=1

(−yi (〈w, xi 〉+ b))+

In the linearly separable case, the Perceptron alg. will be terminated
in finite steps no matter what learning rate is chosen

In the nonseparable case, how to decide the appropriate learning
rate that will make the least mistake is very difficult

Learning rate can be a nonnegative number. More general case, it
can be a positive definite matrix
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What is Machine Learning?

Representation + Optimization + Evaluation

Pedro Domingos, A few useful things to know about machine learning,

Communications of the ACM, Vol. 55 Issue 10, 78-87, October 2012

The most important reading assignment in my Machine Learning
and Data Science and Machine Intelligence Lab at NCTU
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The Master Algorithm
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The Master Algorithm
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Expected Risk vs. Empirical Risk

Assumption: training instances are drawn from an unknown but
fixed probability distribution P(x, y) independently.

Ideally, we would like to have the optimal rule f ∗ that minimizes the
Expected Risk: E (f ) =

∫
`(f (x), y)dP(x, y) among all functions

Unfortunately, we can not do it. P(x, y) is unknown and we have to
restrict ourselves in a certain hypothesis space, F
How about compute f ∗` ∈ F that minimizes the Empirical Risk:
E`(f ) = 1

`

∑
i

`(f (xi ), yi )

Only minimizing the empirical risk will be in danger of overfitting

55 / 136



Outline Introduction to Machine Learning Three Fundamental Algorithms Optimization Support Vector Machine Evaluation and Closed Remark

Approximation Optimization Approach

Most of learning algorithms can be formulated as an
optimization problem

The objective function consists of two parts: E`(f )+ controls
on VC-error bound

Controlling the VC-error bound will avoid the overfitting risk

It can be achieved via adding the regularization term into the
objective function

Note that: We have made lots of approximations when
formulate a learning task as an optimization problem

Why bother to find the optimal solution for the problem?
One could stop the optimization iteration before its
convergence

56 / 136



Outline Introduction to Machine Learning Three Fundamental Algorithms Optimization Support Vector Machine Evaluation and Closed Remark

Approximation Optimization Approach

Most of learning algorithms can be formulated as an
optimization problem

The objective function consists of two parts: E`(f )+ controls
on VC-error bound

Controlling the VC-error bound will avoid the overfitting risk

It can be achieved via adding the regularization term into the
objective function

Note that: We have made lots of approximations when
formulate a learning task as an optimization problem

Why bother to find the optimal solution for the problem?
One could stop the optimization iteration before its
convergence

57 / 136



Outline Introduction to Machine Learning Three Fundamental Algorithms Optimization Support Vector Machine Evaluation and Closed Remark

Approximation Optimization Approach

Most of learning algorithms can be formulated as an
optimization problem

The objective function consists of two parts: E`(f )+ controls
on VC-error bound

Controlling the VC-error bound will avoid the overfitting risk

It can be achieved via adding the regularization term into the
objective function

Note that: We have made lots of approximations when
formulate a learning task as an optimization problem

Why bother to find the optimal solution for the problem?
One could stop the optimization iteration before its
convergence

58 / 136



Outline Introduction to Machine Learning Three Fundamental Algorithms Optimization Support Vector Machine Evaluation and Closed Remark

Approximation Optimization Approach

Most of learning algorithms can be formulated as an
optimization problem

The objective function consists of two parts: E`(f )+ controls
on VC-error bound

Controlling the VC-error bound will avoid the overfitting risk

It can be achieved via adding the regularization term into the
objective function

Note that: We have made lots of approximations when
formulate a learning task as an optimization problem

Why bother to find the optimal solution for the problem?
One could stop the optimization iteration before its
convergence

59 / 136



Outline Introduction to Machine Learning Three Fundamental Algorithms Optimization Support Vector Machine Evaluation and Closed Remark

Approximation Optimization Approach

Most of learning algorithms can be formulated as an
optimization problem

The objective function consists of two parts: E`(f )+ controls
on VC-error bound

Controlling the VC-error bound will avoid the overfitting risk

It can be achieved via adding the regularization term into the
objective function

Note that: We have made lots of approximations when
formulate a learning task as an optimization problem

Why bother to find the optimal solution for the problem?
One could stop the optimization iteration before its
convergence

60 / 136



Outline Introduction to Machine Learning Three Fundamental Algorithms Optimization Support Vector Machine Evaluation and Closed Remark

Approximation Optimization Approach

Most of learning algorithms can be formulated as an
optimization problem

The objective function consists of two parts: E`(f )+ controls
on VC-error bound

Controlling the VC-error bound will avoid the overfitting risk

It can be achieved via adding the regularization term into the
objective function

Note that: We have made lots of approximations when
formulate a learning task as an optimization problem

Why bother to find the optimal solution for the problem?
One could stop the optimization iteration before its
convergence

61 / 136



Outline Introduction to Machine Learning Three Fundamental Algorithms Optimization Support Vector Machine Evaluation and Closed Remark

Constrained Optimization Problem

Problem setting: Given function f , gi , i = 1, ..., k and hj ,
j = 1, ...,m, defined on a domain Ω ⊆ Rn,

min
x∈Ω

f (x)

s.t. gi (x) ≤ 0, ∀i
hj(x) = 0, ∀j

where f (x) is called the objective function and g(x) ≤ 0, h(x) = 0
are called constrains.
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Example

min f (x) = 2x2
1 + x2

2 + 3x2
3

s.t. 2x1 − 3x2 + 4x3 = 49

<sol>
L(x , β) = f (x) + β(2x1 − 3x2 + 4x3 − 49), β ∈ R

∂

∂x1
L(x , β) = 0 ⇒ 4x1 + 2β = 0

∂

∂x2
L(x , β) = 0 ⇒ 2x2 − 3β = 0

∂

∂x3
L(x , β) = 0 ⇒ 6x3 + 4β = 0

2x1 − 3x2 + 4x3 − 49 = 0⇒ β = −6
⇒ x1 = 3, x2 = −9, x3 = 4
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x1 + x2 ≤ 4

−x1 − x2 ≤ −2
x1, x2 ≥ 0

∇f (x) = [2x1, 2x2]

min
x∈R2

x21 + x22

∇f (x∗) = [2, 2]
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Definitions and Notation

Feasible region:

F = {x ∈ Ω | g(x) ≤ 0, h(x) = 0}

where g(x) =

 g1(x)
...

gk(x)

 and h(x) =

 h1(x)
...

hm(x)


A solution of the optimization problem is a point x∗ ∈ F such
that @x ∈ F for which f (x) < f (x∗) and x∗ is called a global
minimum.
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Definitions and Notation

A point x̄ ∈ F is called a local minimum of the optimization
problem if ∃ε > 0 such that

f (x) ≥ f (x̄), ∀x ∈ F and ‖x − x̄‖ < ε

At the solution x∗, an inequality constraint gi (x) is said to be
active if gi (x

∗) = 0, otherwise it is called an inactive
constraint.

gi (x) ≤ 0 ⇔ gi (x) + ξi = 0, ξi ≥ 0 where ξi is called the slack
variable
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Definitions and Notation

Remove an inactive constraint in an optimization problem will
NOT affect the optimal solution

Very useful feature in SVM

If F = Rn then the problem is called unconstrained
minimization problem

Least square problem is in this category
SSVM formulation is in this category
Difficult to find the global minimum without convexity
assumption
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The Most Important Concepts in
Optimization(minimization)

A point is said to be an optimal solution of a unconstrained
minimization if there exists no decent direction
=⇒ ∇f (x∗) = 0

A point is said to be an optimal solution of a constrained
minimization if there exists no feasible decent direction
=⇒ KKT conditions

There might exist decent direction but move along this
direction will leave out the feasible region
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Minimum Principle

Let f : Rn → R be a convex and differentiable function F ⊆ Rn be
the feasible region.

x∗ ∈ arg min
x∈F

f (x)⇐⇒ ∇f (x∗)(x − x∗) ≥ 0 ∀x ∈ F

Example:

min(x − 1)2 s.t. a ≤ x ≤ b
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x1 + x2 ≤ 4

−x1 − x2 ≤ −2
x1, x2 ≥ 0

∇f (x) = [2x1, 2x2]

min
x∈R2

x21 + x22

∇f (x∗) = [2, 2]
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Linear Programming Problem

An optimization problem in which the objective function and
all constraints are linear functions is called a linear
programming problem

(LP) min p>x

s.t. Ax ≤ b

Cx = d

L ≤ x ≤ U
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Linear Programming Solver in MATLAB

X=LINPROG(f,A,b) attempts to solve the linear programming
problem:

min
x

f’*x subject to: A*x <= b

X=LINPROG(f,A,b,Aeq,beq) solves the problem above while
additionally satisfying the equality constraints Aeq*x = beq.

X=LINPROG(f,A,b,Aeq,beq,LB,UB) defines a set of lower and
upper bounds on the design variables, X, so that the solution
is in the range LB <= X <= UB.
Use empty matrices for LB and UB if no bounds exist. Set
LB(i) = -Inf if X(i) is unbounded below; set UB(i) = Inf if X(i)
is unbounded above.
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Linear Programming Solver in MATLAB

X=LINPROG(f,A,b,Aeq,beq,LB,UB,X0) sets the starting point
to X0. This option is only available with the active-set al-
gorithm. The default interior point algorithm will ignore any
non-empty starting point.

You can type “help linprog” in MATLAB to get more information!
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L1-Approximation: min
x∈Rn
‖Ax − b‖1

‖z‖1 =
m∑
i=1
|zi |

min
x ,s

1>s

s.t. −s ≤ Ax − b ≤ s
Or

min
x ,s

m∑
i=1

si

s.t. −si ≤ Aix − bi ≤ si ∀i

min
x ,s

[
0 · · · 0 1 · · · 1

] [x
s

]
s.t.

[
A −I
−A −I

]
2m×(n+m)

[
x
s

]
≤
[
b
−b

]
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Chebyshev Approximation: min
x∈Rn
‖Ax − b‖∞

‖z‖∞ = max
1≤i≤m

|zi |

min
x ,γ

γ

s.t. − 1γ ≤ Ax − b ≤ 1γ

min
x ,s

[
0 · · · 0 1

] [x
γ

]
s.t.

[
A −1
−A −1

]
2m×(n+1)

[
x
γ

]
≤
[
b
−b

]
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Quadratic Programming Problem

If the objective function is convex quadratic while the
constraints are all linear then the problem is called convex
quadratic programming problem

(QP) min
1

2
x>Qx + p>x

s.t. Ax ≤ b

Cx = d

L ≤ x ≤ U
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Quadratic Programming Solver in MATLAB

X=QUADPROG(H,f,A,b) attempts to solve the quadratic pro-
gramming problem:

min
x

0.5*x’*H*x+f’*x subject to: A*x <= b

X=QUADPROG(H,f,A,b,Aeq,beq) solves the problem
above while additionally satisfying the equality constraints
Aeq*x=beq.

X=QUADPROG(H,f,A,b,Aeq,beq,LB,UB) defines a set of
lower and upper bounds on the design variables, X, so that
the solution is in the range LB <= X <= UB.
Use empty matrices for LB and UB if no bounds exist. Set
LB(i) = -Inf if X(i) is unbounded below; set UB(i) = Inf if X(i)
is unbounded above.
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Quadratic Programming Solver in MATLAB

X=QUADPROG(H,f,A,b,Aeq,beq,LB,UB,X0) sets the starting
point to X0.

You can type “help quadprog” in MATLAB to get more
information!
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Standard Support Vector Machine

min
w ,b,ξA,ξB

C (1>ξA + 1>ξB) +
1

2
‖w‖2

2

(Aw + 1b) + ξA ≥ 1

(Bw + 1b)− ξB ≤ −1
ξA ≥ 0, ξB ≥ 0
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Farkas’ Lemma

For any matrix A ∈ Rm×n and any vector b ∈ Rn, either

Ax ≤ 0, b>x > 0 has a solution

or
A>α = b, α ≥ 0 has a solution

but never both.
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Farkas’ Lemma
Ax ≤ 0, b>x > 0 has a solution

b is NOT in the cone generated by A1 and A2

A1

A2

b

Solution Area

{x|b>x > 0} ∩ {x|Ax ≤ 0} 6= 0

81 / 136



Outline Introduction to Machine Learning Three Fundamental Algorithms Optimization Support Vector Machine Evaluation and Closed Remark

Farkas’ Lemma
A>α = b, α ≥ 0 has a solution

b is in the cone generated by A1 and A2

A1

A2

b

{x|b> > 0} ∩ {x|Ax ≤ 0} = ∅
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Minimization Problem
vs.
Kuhn-Tucker Stationary-point Problem

MP:

min
x∈Ω

f (x)

s.t. g(x) ≤ 0

KTSP:

Find x̄ ∈ Ω, ᾱ ∈ Rm such that

∇f (x̄) + ᾱ>∇g(x̄) = 0

ᾱ>g(x̄) = 0

g(x̄) ≤ 0

ᾱ ≥ 0
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Lagrangian Function
L(x , α) = f (x) + α>g(x)

Let L(x , α) = f (x) + α>g(x) and α ≥ 0

If f (x), g(x) are convex the L(x , α) is convex.

For a fixed α ≥ 0, if x̄ ∈ arg min{L(x , α)|x ∈ Rn}
then

∂L(x , α)

∂x

∣∣∣
x=x̄

= ∇f (x̄) + α>∇g(x̄) = 0

Above result is a sufficient condition if L(x , α) is convex.
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KTSP with Equality Constraints?
(Assume h(x) = 0 are linear functions)

h(x) = 0 ⇔ h(x) ≤ 0 and −h(x) ≤ 0

KTSP:

Find x̄ ∈ Ω, ᾱ ∈ Rk , β̄+, β̄− ∈ Rm such that

∇f (x̄) + ᾱ>∇g(x̄) + (β̄+ − β̄−)>∇h(x̄) = 0

ᾱ>g(x̄) = 0, (β̄+)>h(x̄) = 0, (β̄−)>(−h(x̄)) = 0

g(x̄) ≤ 0, h(x̄) = 0

ᾱ ≥ 0, β̄+, β̄− ≥ 0
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KTSP with Equality Constraints

KTSP:

Find x̄ ∈ Ω, ᾱ ∈ Rk , β̄ ∈ Rm such that

∇f (x̄) + ᾱ>∇g(x̄) + β̄∇h(x̄) = 0

ᾱ>g(x̄) = 0, g(x̄) ≤ 0, h(x̄) = 0

ᾱ ≥ 0

Let β̄ = β̄+ − β̄− and β̄+, β̄− ≥ 0
then β̄ is free variable
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Generalized Lagrangian Function
L(x , α, β) = f (x) + α>g(x) + β>h(x)

Let L(x , α, β) = f (x) + α>g(x) + β>h(x) and α ≥ 0

If f (x), g(x) are convex and h(x) is linear then L(x , α, β) is
convex.

For fixed α ≥ 0, if x̄ ∈ arg min{L(x , α, β)|x ∈ Rn}
then

∂L(x , α, β)

∂x

∣∣∣
x=x̄

= ∇f (x̄) + α>∇g(x̄) + β>∇h(x̄) = 0

Above result is a sufficient condition if L(x , α, β) is convex.
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Lagrangian Dual Problem

max
α,β

min
x∈Ω

L(x , α, β)

s.t. α ≥ 0

m

max
α,β

θ(α, β)

s.t. α ≥ 0

where θ(α, β) = inf
x∈Ω
L(x , α, β)
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Lagrangian Dual Problem

max
α,β

min
x∈Ω

L(x , α, β)

s.t. α ≥ 0

m

max
α,β

θ(α, β)

s.t. α ≥ 0

where θ(α, β) = inf
x∈Ω
L(x , α, β)
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Weak Duality Theorem

Let x̄ ∈ Ω be a feasible solution of the primal problem and (α, β) a
feasible sulution of the dual problem. then f (x̄) ≥ θ(α, β)

θ(α, β) = inf
x∈Ω
L(x , α, β) ≤ L(x̃ , α, β)

Corollary:

sup{θ(α, β)|α ≥ 0} ≤ inf{f (x)|g(x) ≤ 0, h(x) = 0}
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Weak Duality Theorem

Corollary

If f (x∗) = θ(α∗, β∗) where α∗ ≥ 0 and g(x∗) ≤ 0 , h(x∗) = 0
,then x∗ and (α∗, β∗) solve the primal and dual problem
respectively. In this case,

0 ≤ α ⊥ g(x) ≤ 0
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Saddle Point of Lagrangian

Let x∗ ∈ Ω,α∗ ≥ 0, β∗ ∈ Rm satisfying

L(x∗, α, β) ≤ L(x∗, α∗, β∗) ≤ L(x , α∗, β∗) , ∀x ∈ Ω , α ≥ 0

Then (x∗, α∗, β∗) is called The saddle point of the Lagrangian
function
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Saddle Point of f (x , y) = x2 − y 2

Saddle point  of 22),( yxyxf −=
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Dual Problem of Linear Program

Primal LP min
x∈Rn

p>x

subject to Ax ≥ b , x ≥ 0

Dual LP max
α∈Rm

b>α

subject to A>α ≤ p , α ≥ 0

All duality theorems hold and work perfectly!
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Lagrangian Function of Primal LP
L(x , α) = p>x + α>1 (b − Ax) + α>2 (−x)

max
α1,α2≥0

min
x∈Rn
L(x , α1, α2)

m

max
α1,α2≥0

p>x + α>1 (b − Ax) + α>2 (−x)

subject to p − A>α1 − α2 = 0

(∇xL(x , α1, α2) = 0)
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Application of LP Duality
LSQ − NormalEquation Always Has a Solution

For any matrix A ∈ Rmxn and any vector b ∈ Rm ,
consider min

x∈Rn
‖Ax − b‖2

2

x∗ ∈ arg min{‖Ax − b‖2
2} ⇔ A>Ax∗ = A>b

Claim : A>Ax = A>b always has a solution.
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Dual Problem of Strictly Convex Quadratic Program

Primal QP

min
x∈Rn

1

2
x>Qx + p>x

s.t. Ax ≤ b

With strictlyconvex assumption, we have

Dual QP

max −1

2
(p> + α>A)Q−1(A>α + p)− α>b

s.t. α ≥ 0
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Outline

1 Introduction to Machine Learning
Some Examples
Basic concept of learning theory

2 Three Fundamental Algorithms

3 Optimization

4 Support Vector Machine

5 Evaluation and Closed Remark
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Binary Classification Problem
Linearly Separable Case

x>w + b = 0

x>w + b = −1

x>w + b = +1

A-

Malignant

A+

Benign

w
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Support Vector Machines
Maximizing the Margin between Bounding Planes

x>w + b = −1

x>w + b = +1

A-
A+

w

2
‖w‖2 = Margin
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Why Use Support Vector Machines?
Powerful tools for Data Mining

SVM classifier is an optimally defined surface

SVMs have a good geometric interpretation

SVMs can be generated very efficiently

Can be extended from linear to nonlinear case

Typically nonlinear in the input space
Linear in a higher dimensional ”feature space”
Implicitly defined by a kernel function

Have a sound theoretical foundation

Based on Statistical Learning Theory
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Why We Maximize the Margin?
(Based on Statistical Learning Theory)

The Structural Risk Minimization (SRM):

The expected risk will be less than or equal to empirical risk
(training error)+ VC (error) bound

‖w‖2 ∝ VC bound

min VC bound⇔ min 1
2‖w‖2

2 ⇔ max Margin
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Summary the Notations

Let S = {(x1, y1), (x2, y2), . . . , (x`, y`) be a training dataset and
represented by matrices

A =


(x1)>

(x2)>

...
(x`)>

 ∈ R`×n,D =

y1 · · · 0
...

. . .
...

0 · · · y`

 ∈ R`×`

Aiw + b ≥ +1, for Dii = +1
Aiw + b ≤ −1, for Dii = −1 , equivalent to D(Aw + 1b) ≥ 1 ,
where 1 = [1, 1, . . . , 1]> ∈ R`
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Support Vector Classification
(Linearly Separable Case, Primal)

The hyperplane (w , b) is determined by solving the minimization
problem:

min
(w ,b)∈Rn+1

1

2
‖w‖2

2

D(Aw + 1b) ≥ 1,

It realizes the maximal margin hyperplane with geometric margin

γ =
1

‖w‖2
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Support Vector Classification
(Linearly Separable Case, Dual Form)

The dual problem of previous MP:

max
α∈R`

1>α− 1

2
α>DAA>Dα

subject to
1>Dα = 0, α ≥ 0

Applying the KKT optimality conditions, we have w = A>Dα. But
where is b ?
Don’t forget

0 ≤ α ⊥ D(Aw + 1b)− 1 ≥ 0
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Dual Representation of SVM

(Key of Kernel Methods: w = A>Dα∗ =
∑̀
i=1

yiα
∗
i A
>
i )

The hypothesis is determined by (α∗, b∗)

h(x) = sgn(〈x · A>Dα∗〉+ b∗)

= sgn(
∑̀
i=1

yiα
∗
i 〈x i · x〉+ b∗)

= sgn(
∑
α∗
i >0

yiα
∗
i 〈x i · x〉+ b∗)

Remember : A>i = xi
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Soft Margin SVM
(Nonseparable Case)

If data are not linearly separable

Primal problem is infeasible
Dual problem is unbounded above

Introduce the slack variable for each training point

yi (w
>x i + b) ≥ 1− ξi , ξi ≥ 0, ∀i

The inequality system is always feasible e.g.

w = 0, b = 0, ξ = 1
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x>w + b = −1

x>w + b = +1

A-
A+

w

ξi

ξj

2
‖w‖2 = Margin
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Robust Linear Programming
Preliminary Approach to SVM

min
w ,b,ξ

1>ξ

s.t. D(Aw + 1b) + ξ ≥ 1 (LP)

ξ ≥ 0

where ξ is nonnegative slack(error) vector

The term 1>ξ, 1-norm measure of error vector, is called the
training error

For the linearly separable case, at solution of(LP): ξ = 0
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Support Vector Machine Formulations
(Two Different Measures of Training Error)

2-Norm Soft Margin:

min
(w ,b,ξ)∈Rn+1+`

1

2
‖w‖2

2 +
C

2
‖ξ‖2

2

D(Aw + 1b) + ξ ≥ 1

1-Norm Soft Margin (Conventional SVM)

min
(w ,b,ξ)∈Rn+1+`

1

2
‖w‖2

2 + C1>ξ

D(Aw + 1b) + ξ ≥ 1

ξ ≥ 0
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Tuning Procedure
How to determine C ?Tuning Procedure

How to determine C?

overfitting

The final value of parameter is one with 
the maximum testing set correctness !

C

The final value of parameter is one with the maximum testing set
correctness!
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1-Norm SVM
(Different Measure of Margin)

1-Norm SVM:

min
(w ,b,ξ)∈Rn+1+`

‖ w ‖1 +C1>ξ

D(Aw + 1b) + ξ ≥ 1

ξ ≥ 0

Equivalent to:

min
(s,w ,b,ξ)∈R2n+1+`

1s + C1>ξ

D(Aw + 1b) + ξ ≥ 1

−s ≤ w ≤ s

ξ ≥ 0

Good for feature selection and similar to the LASSO
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Two-spiral Dataset
(94 white Dots & 94 Red Dots)

Two-spiral Dataset
(94 White Dots & 94 Red Dots)
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Learning in Feature Space
(Could Simplify the Classification Task)

Learning in a high dimensional space could degrade
generalization performance

This phenomenon is called curse of dimensionality

By using a kernel function, that represents the inner product
of training example in feature space, we never need to
explicitly know the nonlinear map

Even do not know the dimensionality of feature space

There is no free lunch
Deal with a huge and dense kernel matrix

Reduced kernel can avoid this difficulty
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Φ

X −−− −→F

Feature map

nonlinear pattern in data space approximate linear pattern in feature space
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Linear Machine in Feature Space

Let φ : X −→ F be a nonlinear map from the input space to some
feature space
The classifier will be in the form(primal):

f (x) = (
?∑

j=1

wjφj(x)) + b

Make it in the dual form:

f (x) = (
∑̀
i=1

αiyi 〈φ(x i ) · φ(x)〉) + b
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Kernel:Represent Inner Product
in Feature Space

Definition: A kernel is a function K : X × X −→ R
such that for all x , z ∈ X

K (x , z) = 〈φ(x) · φ(z)〉

where φ : X −→ F
The classifier will become:

f (x) = (
∑̀
i=1

αiyiK (x i , x)) + b
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A Simple Example of Kernel
Polynomial Kernel of Degree 2: K(x,z)=〈x , z〉2

Let x =

[
x1

x2

]
, z =

[
z1

z2

]
∈ R2 and the nonlinear map

φ : R2 7−→ R3 defined by φ(x) =

 x2
1

x2
2√

2x1x2

.

Then 〈φ(x), φ(z)〉 = 〈x , z〉2 = K (x , z)

There are many other nonlinear maps, ψ(x), that satisfy the
relation: 〈ψ(x), ψ(z)〉 = 〈x , z〉2 = K (x , z)
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Power of the Kernel Technique

Consider a nonlinear map φ : Rn 7−→ Rp that consists of distinct
features of all the monomials of degree d.

Then p =

(
n + d − 1

d

)
.

x3
1x

1
2x

4
3x

4
4 =⇒ x o o o x o x o o o o x o o o o

For example: n=11, d=10, p=92378

Is it necessary? We only need to know 〈φ(x), φ(z)〉!
This can be achieved K (x , z) = 〈x , z〉d
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Kernel Technique
Based on Mercer’s Condition(1909)

The value of kernel function represents the inner product of
two training points in feature space

Kernel function merge two steps
1 map input data from input space to feature space (might be

infinite dim.)
2 do inner product in the feature space
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Example of Kernel
K (A,B) : R`×n × Rn×˜̀ 7−→ R`×˜̀

A ∈ R`×n, a ∈ R`, µ ∈ R, d is an integer:

Polynomial Kernel:

(AA> + µaa>)d• (Linear KernelAA> : µ = 0, d = 1)

Gaussian (Radial Basis) Kernel:

K (A,A>)ij = e−µ‖Ai−Aj‖2
2 , i , j = 1, ...,m

The ij-entry of K (A,A>) represents the ”similarity” of data
points Ai and Aj
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Nonlinear Support Vector Machine
(Applying the Kernel Trick)

1-Norm Soft Margin Linear SVM:

max
α∈R`

1>α− 1

2
α>DAA>Dα s.t. 1>Dα = 0, 0 ≤ α ≤ C1

Applying the kernel trick and running linear SVM in the
feature space without knowing the nonlinear mapping

1-Norm Soft Margin Nonlinear SVM:

max
α∈R`

1>α− 1

2
α>DK (A,A>)Dα

s.t. 1>Dα = 0, 0 ≤ α ≤ C1

All you need to do is replacing AA> by K (A,A>)
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1-Norm SVM
(Different Measure of Margin)

1-Norm SVM:

min
(w ,b,ξ)∈Rn+1+`

‖ w ‖1 +C1>ξ

D(Aw + 1b) + ξ ≥ 1

ξ ≥ 0

Equivalent to:

min
(s,w ,b,ξ)∈R2n+1+`

1s + C1>ξ

D(Aw + 1b) + ξ ≥ 1

−s ≤ w ≤ s

ξ ≥ 0

Good for feature selection and similar to the LASSO
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Outline

1 Introduction to Machine Learning
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Basic concept of learning theory
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5 Evaluation and Closed Remark
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How to Evaluated What’s been learned
Cost is not sensitive

Measure the performance of a classifier in terms of error rate
or accuracy

Error rate =
Number of misclassified point

Total number of data point

Main Goal: Predict the unseen class label for new data

We have to asses a classifier’s error rate on a set that play no
rule in the learning class

Split the data instances in hand into two parts:
1 Training set: for learning the classifier.
2 Testing set: for evaluating the classifier.
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k-fold Stratified Cross Validation
Minimize the usage of the data in hands

Split the data into k approximately equal partitions.

Each in turn is used for testing while the remainder is used for
training.

The labels (+/−) in the training and testing sets should be in
about right proportion.

Doing the random splitting in the positive class and negative
class respectively will guarantee it.
This procedure is called stratification.

Leave-one-out cross-validation if k = # of data point.

No random sampling is involved but nonstratified.
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How to Compare Two Classifier?
Testing Hypothesis:Paired t-test

We compare two leaving algorithm by comparing the average
error rate over several cross-validations.

Assume the same cross-validation split can be used for both
methods

H0 : d̄ = 0 v.s H1 : d̄ 6= 0
where d̄ = 1

k

∑k
i=1 di and di = xi − yi

The t-statistic:

t =
d̄√
σ2
d/k
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How to Evaluate What’s Been Learned?
When cost is sensitive

Two types error will occur: False Positive(FP) & False
Negative(FN)

For binary classification problem, the results can be
summarized in a 2× 2 confusion matrix.

Predicted Class

True Pos.
(TP)

False Neg.
(FN)

Actual
Class

False Pos.
(FP)

True Neg.
(FN)
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ROC Curve
Receiver Operating Characteristic Curve

An evaluation method for learning models.

What it concerns about is the Ranking of instances made by
the learning model.

A Ranking means that we sort the instances w.r.t the
probability of being a positive instance from high to low.

ROC curve plots the true positive rate (TPr) as a function of
the false positive rate (FPr).
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An example of ROC Curve
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Using ROC to Compare Two Methods

Figure: Under the same FP rate, method A is better than B.
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Using ROC to Compare Two Methods
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Area under the Curve (AUC)

An index of ROC curve with range from 0 to 1.

An AUC value of 1 corresponds to a perfect Ranking (all
positive instances are ranked high than all negative instance).

A simple formula for calculating AUC:

AUC =

∑m
i=1

∑n
j=1 If (xi )>f (xj )

m

where m: number of positive instances.
n: number of negative instances.
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Performance Measures in Information Retrieval (IR)

An IR system, such as Google, for given a query (keywords
search) will try to retrieve all relevant documents in a corpus.

Documents returned that are NOT relevant: FP.
The relevant documents that are NOT return: FN.

Performance measures in IR, Recall & Precision.

Recall =
TP

TP + TN

and

Precision =
TP

TP + FP
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Balance the Trade-off between Recall and Precision

Two extreme cases:
1 Return only document with 100% confidence then precision=1

but recall will be very small.
2 Return all documents in the corpus then recall=1 but precision

will be very small.

F-measure balances this trade-off:

F −measure =
2

1

Recall
+

1

Precision
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