Clustering and EM Algorithm

Yuh-Jye Lee

Dept. Applied Mathematics at NCTU

May 23, 2017
Unsupervised Learning: Clustering

- Given a dataset \(S = \{ x^i | x^i \in \mathbb{R}^n, i = 1, 2, \ldots, \ell \} \)
- Note that: we don’t have the label, \(y_i \) now.
- It is considered as a *unsupervised learning* problem
- We would like to find the *structure* within the dataset \(S \).
 - *Similar* to one another within the *same* cluster
 - *Dissimilar* to the objects in other clusters
- There are many different type of clustering algorithms such as:
 - Bottom-up: Hierarchical Agglomerative Clustering
 - Top-Down: \(k \)-means, soft \(k \)-means, SOM and MDS
Try to group data into \(k \) clusters and attempt to group data points to minimize the sum of squares distance to their central mean.

Here smaller distance implies larger similarity

Similar to one another within the *same* cluster

Algorithm works by iterating between two stages until the data points converge.
Given a dataset \(S = \{ \mathbf{x}^i | \mathbf{x}^i \in \mathbb{R}^n, i = 1, 2, \ldots, \ell \} \) and a positive integer \(k \).

Introduce a set of \(k \) prototype vectors, \(\mu_j, j = 1, 2, \ldots, k \) and \(\mu_j \) corresponds to the centroid of the \(j^{th} \) cluster.

Goal is to find a grouping of data points and prototype vectors that minimizes the sum of squares distance of each data point.

You have to find \(k \) prototype vectors, \(\mu_j, j = 1, 2, \ldots, k \) and \(\mu_j \) and the membership for each data point.
Let r_{ij} be a *binary variable* that indicates the membership of data point x^i is in the cluster j or not.

We would to find k *prototype vectors*, $\mu_j, j = 1, 2, \ldots, k$ and μ_j and the *membership* for each data point.

Our objective function becomes:

$$\min_{r_{ij}, \mu_j} \sum_{i=1}^{\ell} \sum_{j=1}^{k} r_{ij} \|x^i - \mu_j\|_2^2$$
How to solve it?

- Algorithm initializes the k **centroids** to k distinct *random data points*.
- Cycles between two stages until convergence is reached.
- Convergence: since there are only a finite set of possible assignments.
Given a Set of Centroids, How to Update the Membership?

Update Rule for Membership

For each data point, determine r_{ij} where:

$$r_{ij} = \begin{cases}
1 & : \text{ if } j \in \text{arg min } \|x^i - \mu_j\|_2^2 \\
0 & : \text{ otherwise}
\end{cases}$$
How to Update the *Centroids* According to New Membership?

Update Rule for Centroids

\[
\mu_j = \frac{\sum_{i=1}^{\ell} r_{ij} x^i}{\sum_{i=1}^{\ell} r_{ij}}, \quad j = 1, 2, \ldots, k
\]
How to Select Initial Seeds? Can We Do Better than Random?

k-means++

1. Choose one center *uniformly at random* from among the data points.

2. For each data point x^i, compute $D(x)$, the distance between x^i and the nearest center that has already been chosen.

3. Choose one new data point at random as a new center, using a weighted probability distribution where a point x is chosen with probability proportional to $D(x)^2$.

4. Repeat Steps 2 and 3 until k centers have been chosen.

5. Now that the initial centers have been chosen, proceed using standard k-means.
Examples of k-means

- Cluster black and white intensities: Intensities: 1, 3, 8, 11
 Centers $c_1 = 7$, $c_2 = 10$
- Consider points 0, 20, 32.
Soft k-means

Partial Membership

- Clustering typically assumes that each instance is given a "hard" assignment to exactly one cluster.
- Does not allow uncertainty in class membership or for an instance to belong to more than one cluster.
- *Soft clustering* gives probabilities that an instance belongs to each of a set of clusters.
- Each instance is assigned a *probability distribution* across a set of discovered categories (probabilities of all categories must sum to 1).
The Expectation Maximization Algorithm

EM-Algorithm

- The EM algorithm is an efficient iterative procedure to compute the Maximum Likelihood (ML) estimate in the presence of *missing or hidden* data.
 - In the soft k-means, we DON’T know the proportion of each instance belong to each cluster.
- In Maximum Likelihood estimation, we wish to estimate the model parameter(s) for which the observed data are the *most likely*.
- Each iteration of the EM algorithm consists of two processes:
 - E-step: the missing data are estimated given the observed data and current estimate of the model parameters.
 - M-step: the likelihood function is maximized under the assumption that the missing data are known.