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Introduction

Outlier detection is an important issue in data mining and has
been studied in different research areas.

Outlier detection methods are designed for finding the rare
instances or deviated data.

In this work, we use “Leave One Out” procedure to check
each individual point the “with or without” effect on the
variation of principal directions.

An over-sampling principal component analysis (PCA) outlier
detection method is proposed for emphasizing the influence of
an abnormal instance as well.

We also present a quick updating technique which satisfies
the on-line scenarios.
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Introduction

One Possible Definition of Outliers

An outlier is an observation that deviates so much from other
observations as to arouse suspicion that it was generated by a
different mechanism (by Hawkins).

Michael Jordan is an outlier because of a well-known
quotation by Charles Barkley: “I am the best basketball player
in the earth, Jordan? He is an alien”.
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Introduction

Another Possible Definition of Outliers

An outlier is an observation that enormously affects model
when we add or remove it from the entire dataset.

Wilt Chamberlain is an outlier on account of his responsibility
for several rule changes in basketball. In order to diminish his
dominance, the basketball authorities set some rules including
widening the lane, as well as changes to rules regarding
inbounding the ball and shooting free throws.
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Principal Component Analysis

Let A = [x>1 ; x>2 ; · · · ; x>n ] ∈ Rn×p be the data matrix.

Typically, PCA is formulated as the following optimization
problem

max
U∈Rp×k ,‖U‖=I

n∑

i=1

U>(xi − µ)(xi − µ)>U. (1)

Alternatively, one can approach the PCA problem as
minimizing the data reconstruction error, i.e.

min
U∈Rp×k ,‖U‖=I

J(U) =
n∑

i=1

‖(xi − µ)−UU>(xi − µ)‖2. (2)

U is a matrix consisting of k dominant eigenvectors.
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Principal Component Analysis (cont’d)

Generally, the problem in either (1) or (2) can be solved by
deriving an eigenvalue decomposition problem:

ΣAU = UΛ (3)

ΣA is the covariance matrix.

The time complexity and memory requirement are O(p3) and
O(p2) respectively.
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The Effect of An Outlier on Principal Directions

PCA is sensitive to outliers.
We use the leave one out (LOO) procedure to explore the
variation of principal direction.
A particular instance with high variation of the principal
directions will be an abnormal instance.

6 ·

Remove an outlier

Add an outlier

Remove a normal data point

Add a normal data point

Fig. 1. The effect of adding/removing an outlier or a normal data instance on the principal
direction.

Once these eigenvectors ũt are obtained, we use the absolute value of cosine simi-
larity to measure the variation of the principal directions, i.e.

st = 1− | ⟨ũt,u⟩
∥ũt∥∥u∥

|. (7)

We note that, for the target instance xt, st can be considered as a distance metric,
or a “score of outlierness” to indicate the anomaly of xt. A higher st score (closer
to 1) means that the target instance is more likely to be an outlier. This process
can be considered as a decremental PCA with LOO scheme for anomaly detection.

In contrast with decremental PCA, we also consider the use of incremental PCA
for outlier detection. This strategy is preferable in online anomaly detection ap-
plications, in which we need to determine whether a newly received data instance
is an outlier. If the recently received data points are normal ones, adding such
instances will not significantly affect the principal directions (and vice versa). The
incremental PCA can be formulated as follows

ΣÃũt = λũt, (8)

where Ã = A ∪ {xt}. Again, µ̃ is the mean of Ã, and we have

ΣÃ =
1

n + 1

∑

xi∈A

(xi − µ̃)(xi − µ̃)⊤ +
1

n + 1
(xt − µ̃)(xt − µ̃)⊤. (9)

Similarly, we check the score st of each newly received instance and determine its

ACM Journal Name, Vol. V, No. N, Month 20YY.

Figure: The effect of adding/removing an outlier or a normal data
instance on the principal direction.
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Decremental PCA with LOO Scheme for Anomaly
Detection

In our framework, we need to evaluate a decremental PCA
problem n times in the LOO procedure:

ΣÃũt = λũt , (4)

where Ã = A/{xt} and ΣÃ is the covariance of Ã.

Use st = 1− | 〈ũt ,u〉‖ũt‖‖u‖ | to measure the variation of the principal
directions.

Note that u is the the dominant principal direction from A.

A higher st score (closer to 1) means that the target instance
is more likely to be an outlier.
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Incremental PCA for Anomaly Detection

In contrast with decremental PCA, we also consider the use of
incremental PCA for outlier detection.

This strategy is preferable in online anomaly detection
applications.

That is, we can use it to determine whether a newly received
data instance is an outlier.

The incremental PCA can be formulated as follows

ΣÃũt = λũt , (5)

where Ã = A ∪ {xt}.
Similarly, we check the score st of each newly received
instance and determine its outlierness accordingly.
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Over-Sampling Principal Components Analysis (osPCA)

A single outlier instance will not significantly change the
principal direction when the size of the data is large.

We employ an over-sampling scheme to emphasize the
influence of an outlier.

The variation of principal directions and mean of the data will
be enlarged if we duplicate an outlier.

We integrate the over-sampling and LOO strategies together
with the incremental PCA.

16 / 36



Anomaly Detection via Online Over-Sampling Principal Component Analysis

Over-Sampling PCA for Anomaly Detection

Anomaly Detection via Online Over-Sampling PCA · 9

(a) Over-sampling a normal data point

single point dulpicated points

(b) Over-sampling an outlier

dulpicated pointssingle point

Fig. 2. The effect of an over-sampled normal data or outlier instance on the principal direction.

the outer product matrix and xt be the target instance (to be over-sampled), we
use the following technique to update the mean µ̃ and the covariance matrix ΣÃ:

µ̃ =
µ + r · xt

1 + r
(13)

and

ΣÃ =
1

1 + r
Q +

r

1 + r
xtx

⊤
t − µ̃µ̃⊤, (14)

where r < 1 is the parameter controlling the size when over-sampling xt. From (14),
we can see that one only needs to keep the matrix Q when calculating ΣÃ, and
there is no need to re-compute the entire covariance matrix in this LOO framework.

Once the update covariance matrix ΣÃ is obtained, the principal directions can
be obtained by solving the eigenvalue decomposition problem of each of the ma-
trices ΣÃ. In order to alleviate this computation load, we apply the well-known
power method [Golub and Golub 1983], which is a simple iterative algorithm and
does not compute matrix decomposition. This method starts with an initial nor-
malized vector u0, which could be an approximation of the dominant eigenvector
or a nonzero random vector. Next, the new uk+1 (a better approximated version

ACM Journal Name, Vol. V, No. N, Month 20YY.

Figure: The effect of an over-sampled normal data or outlier instance on
the principal direction.
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osPCA (cont’d)

Our osPCA algorithm can be formulated as follows

ΣÃũt = λũt , (6)

where Ã = A ∪ {xt , . . . , xt} ∈ R(n+ñ)×p.

Note that

ΣÃ =
1

n + ñ

∑

xi∈A

(xi − µ̃)(xi − µ̃)> +
1

n + ñ

ñ∑

i=1

xtx
>
t − µ̃µ̃>, (7)

i.e., we will duplicate the target instance ñ times.

The major concern is the computation cost of calculating or
updating the principal directions in large-scale problems.
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Remarks on µ and ΣA for osPCA

It is unnecessary to re-compute the covariance matrix in LOO.

The covariance matrix can be easily updated while duplicating
a target instance.

Let Q = AA>

n be the original outer product matrix.

We update µ̃ and ΣÃ by:

µ̃ =
µ + r · xt

1 + r
and ΣÃ =

1

1 + r
Q +

r

1 + r
xtx
>
t − µ̃µ̃>.

Note that 0 < r < 1 is the parameter controlling the size
when over-sampling xt .
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The Power Method for osPCA

To alleviate this computation load, we apply the well-known
power method to determine ũ.

This method starts with an initial normalized vector ũ(0).

ũ is determined by

While (ũ(k) 6= ũ(k−1))

ũ(k+1) =
ΣÃũ

(k)

‖ΣÃũ
(k)‖

End

We only use the first principal component in our experiments.
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Some Remarks on Power Method

Still need to solve an eigenvalue decomposition.

We can use the previous principal direction as the initial point
in power method to reduce computation time.

For high dimensional data, it is not practical to keep the
covariance matrix.

An online PCA algorithm to update the eigenvector is
preferable, which approximates the minimization of
reconstruction error formulation.
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Least Squares Approximation for PCA

Standard PCA:

min
U∈Rp×k ,‖U‖=I

J(U) =
n∑

i=1

‖x̄i −UU>x̄i‖2, (8)

where U is a set eigenvectors and x̄i is (xi − µ).

The above formulation can be further approximated by a least
squares form (i.e., has a closed form solution):

min
U∈Rp×k ,‖U‖=I

Jls(U) =
n∑

i=1

‖x̄i −Uyi‖2, (9)

where yi = U′>x̄i ∈ Rk and U′ is the approximation of U.

The trick for this least squares problem is the approximation
of U>x̄i by yi = U′>x̄i .
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Online Updating for (Least Squares) osPCA

In an online setting, we approximate the current yi = U>t x̄i by
the previous solution U>t−1x̄i as follows

min
Ut∈Rp×k ,‖U‖=I

Jls(Ut) =
t∑

i=1

‖x̄i −Utyi‖2, (10)

where yi = U>t−1x̄i .

For a target instance, we have

min
Ũ∈Rp×k ,‖Ũ‖=I

Jls(Ũ) ≈
n∑

i=1

‖x̄i − Ũyi‖2 + ‖x̄t − Ũyt‖2, (11)

where yt is approximated by U>x̄t .
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Online Updating for osPCA (cont’d)

When over-sampling the target instance ñ times, we have

min
Ũ∈Rp×k ,‖Ũ‖=I

Jls(Ũ) ≈
n∑

i=1

‖x̄i − Ũyi‖2 + ñ‖x̄t − Ũyt‖2. (12)

Equivalently, we convert the above problem into the following
form

min
Ũ∈Rp×k ,‖Ũ‖=I

Jls(Ũ) ≈ β(
n∑

i=1

‖x̄i − Ũyi‖2) + ‖x̄t − Ũyt‖2. (13)

β can be regarded as a weighting factor to suppress the
information from existing data.

The relation between β and the over-sampled number ñ is
β = 1

ñ = 1
nr .
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Online Updating for osPCA (cont’d)

We calculate the solution of ũ by taking the derivative of (13)
with respect to ũ, and thus we have

ũ =

β(
n∑

i=1

yi x̄i ) + yt x̄t

β(
n∑

i=1

y 2
i ) + y 2

t

, (14)

where yi = u>xi and yt = u>xt are the approximations of
ũ>xi and ũ>xt , respectively.

12 ·

Algorithm 1: Anomaly Detection via Online Over-sampling PCA

Input: The data matrix A = [x⊤
1 ;x⊤

2 ; · · · ;x⊤
n ] and the weight β.

Output: Score of outlierness s = [s1s2 · · · sn]. If si is higher than a threshold,
xi is an outlier.

Compute first principal direction u by using (18);

Keep x̄proj =
n∑

j=1

yjx̄j and y =
n∑

j=1

y2
j in (22);

for i← 1 to n do

ũ← βx̄proj+yix̄i

βy+y2
i

by (18);

si ← 1− | ⟨w̃,w⟩
∥ũ∥∥u∥ | by (7);

Table I. Comparisons of the power method and our proposed online osPCA for anomaly detection
in terms of computational complexity and memory requirements. Note that m indicates the
number of iterations.

Power Method Online Over-sampling PCA

Computation complexity O(nmp2) O(np)
Memory requirement O(p2) O(p)
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Fig. 3. The result of identifying outliers in the 2-D synthetic data.

requirement of applying power method is O(p2) because the covariance matrix is
always needed. In our online updating approach, the updating of the principal
direction is done point-wisely, and thus the LOO procedure only results in O(np)
and O(p) for the computation complexity and memory requirement, respectively.

5. EXPERIMENTAL RESULTS

5.1 Anomaly Detection on Synthetic and Real-world Data

5.1.1 2D synthetic data set. To verify the feasibility of our proposed algorithm,
we conduct experiments on both synthetic and real data sets. We first generate a
2-D synthetic data, which consists of 190 normal instances (shown in blue dots in
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Experimental Results

2D Synthetic Data Set

We generate a 2-D synthetic data, which consists of 190
normal instances and 10 deviated instances.

We aim to identify the top 5% of the data as deviated data
(the number of outliers we generated).

The scores of outlierness of all 200 data points are shown the
following plot.
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Experimental Results

UCI and KDD datasets

In our experiments, we evaluate our methods on pendigits

and KDD Cup 99 intrusion detection datasets.

We compare our methods

dPCA (only removing one instance in LOO)
osPCA with power method
OsPCA with online updating

with

LOF (local outlier factor, ACM SIGMOD 2000)
Fast ABOD (angle-based outlier detection, ACM SIGKDD
2008)

In our experiments, we use AUC to evaluate the suspicious
outlier ranking in outlier detection phase
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Experimental Results

Compared with Other Methods (pendigits dataset)

Fixed the digit “0” as the normal data (780 instances) and set up 9
different combination via other digits (20 data points for each)

Scenario dPCA osPCA osPCA Fast ABOD LOF
(power method) (power method) (online updating) (SIGKDD 2008) (SIGMOD 2000)

0 vs. 1 0.9145 (0.0385) 0.9965 (0.0004) 0.9869 (0.0104) 0.9519 (0.0287) 0.9943 (0.0007)
0 vs. 2 0.9573 (0.0317) 0.9959 (0.0003) 0.9879 (0.0225) 0.9214 (0.0279) 0.9966 (0.0002)
0 vs. 3 0.4570 (0.0554) 0.9987 (0.0003) 0.9199 (0.0453) 0.9342 (0.0157) 0.9970 (0.0002)
0 vs. 4 0.7392 (0.0686) 0.9897 (0.0016) 0.8442 (0.0582) 0.9737 (0.0069) 0.9859 (0.0017)
0 vs. 5 0.8126 (0.0485) 0.9961 (0.0005) 0.9623 (0.0260) 0.9721 (0.0086) 0.9980 (0.0003)
0 vs. 6 0.9773 (0.0077) 0.9793 (0.0015) 0.9851 (0.0176) 0.9447 (0.0196) 0.9741 (0.0028)
0 vs. 7 0.8387 (0.0439) 0.9968 (0.0003) 0.9800 (0.0305) 0.9642 (0.0087) 0.9968 (0.0004)
0 vs. 8 0.8519 (0.0476) 0.9816 (0.0172) 0.9245 (0.0395) 0.9913 (0.0019) 0.9939 (0.0016)
0 vs. 9 0.6914 (0.0635) 0.9968 (0.0008) 0.9776 (0.0290) 0.9901 (0.0025) 0.9945 (0.0006)

Table: The AUC scores of decremental PCA (dPCA), over-sampling PCA
(osPCA) with power method, our osPCA with online updating algorithm, fast
ABOD, and LOF on the pendigits data set.
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Experimental Results

Methods dPCA osPCA osPCA Fast ABOD LOF
(with power method) (with online updating)

Time (sec.) 0.0589 0.0892 0.0121 13.804 0.0789

Table: Average CPU time (in seconds) of decremental PCA (dPCA),
over-sampling PCA (osPCA) with power method, our osPCA with online
updating algorithm, fast ABOD, and LOF on the pendigits data set.
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Experimental Results

Results on KDD 99 Data (Outlier Detection)

We extract instances under the tcp protocal in 10% KDD cup
data and test our method and LOF on them

The size of normal data is 76813 and we also extract four
different attacks as the outliers respectively.

Types & sizes osPCA (online updating) LOF
of outliers AUC Time (sec.) AUC Time (sec.)

dos (50) 0.9145 1.784 0.9287 24.84
probe (50) 0.9824 1.784 0.9631 24.72
r2l (50) 0.8009 1.787 0.8253 22.12
u2r (49) 0.8902 1.765 0.8868 20.36

*It takes about 24 seconds to complete the procedure by using power mehtod
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Experimental Results

Results on KDD 99 Data (On-line Anomaly Detection)

We extract 2000 normal instances points as the training set
and apply the data cleaning phase to filter 100 points (5%) in
the normal data to avoid the deviated data

For testing, we select another 2000 normal instances and
different size of attacks as our testing set.

Attack Testing data size TP FP Error
type normal attack Rate Rate Rate

Dos 2000 100 0.940 0.073 0.073
Probe 2000 100 0.980 0.022 0.023
R2L 2000 100 0.900 0.071 0.072
U2R 2000 49 0.816 0.038 0.038

*TP rate is the percentage of attacks detected; FP rate is the percentage of

normal connections falsely classified as attacks.
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Conclusion

Conclusion and Future Work

Variation of principal directions caused by outliers can
determine data anomaly.

The proposed osPCA can be used to enlarge the outlierness of
an outlier in large-scale problems.

Our online osPCA algorithm efficiently updates the principal
directions without solving eigenvalue decomposition problems.

Our method does not need to keep the entire covariance or
data matrices during the evaluation process.

Future research directions:

multi-clustering structure
data in a extremely high dimensional space
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Conclusion

Local Outlier Factor

One of the most popular outlier detection methods.

A local density-based method to evaluate the outlierness for
each instance.

Considers the local data structure for estimating the density.

The density of each individual instance’s k-nearest neighbors
is used to define the degree of outlierness.

2

fining the local neighborhood of the object. We study how this
parameter affects the LOF value, and we present practical
guidelines for choosing the MinPts values for finding local out-
liers.

• Last but not least, we present experimental results which show
both the capability and the performance of finding local outli-
ers. We conclude that finding local outliers using LOF is mean-
ingful and efficient.

The paper is organized as follows. In section 2, we discuss related
work on outlier detection and their drawbacks. In section 3 we dis-
cuss in detail the motivation of our notion of outliers, especially, the
advantage of a local instead of a global view on outliers. In section
4 we introduce LOF and define other auxiliary notions. In section 5
we analyze thoroughly the formal properties of LOF. Since LOF re-
quires the single parameter MinPts, in section 6 we analyze the im-
pact of the parameter, and discuss ways to choose MinPts values for
LOF computation. In section 7 we perform an extensive experi-
mental evaluation. 

2.  RELATED WORK
Most of the previous studies on outlier detection were conducted in
the field of statistics. These studies can be broadly classified into
two categories. The first category is distribution-based, where a
standard distribution (e.g. Normal, Poisson, etc.) is used to fit the
data best. Outliers are defined based on the probability distribution.
Over one hundred tests of this category, called discordancy tests,
have been developed for different scenarios (see [5]). A key draw-
back of this category of tests is that most of the distributions used
are univariate. There are some tests that are multivariate (e.g. mul-
tivariate normal outliers). But for many KDD applications, the un-
derlying distribution is unknown. Fitting the data with standard dis-
tributions is costly, and may not produce satisfactory results.

The second category of outlier studies in statistics is depth-based.
Each data object is represented as a point in a k-d space, and is as-
signed a depth. With respect to outlier detection, outliers are more
likely to be data objects with smaller depths. There are many defi-
nitions of depth that have been proposed (e.g. [20], [16]). In theory,
depth-based approaches could work for large values of k. However,
in practice, while there exist efficient algorithms for k = 2 or 3
([16], [18], [12]), depth-based approaches become inefficient for
large datasets for k ≥ 4. This is because depth-based approaches
rely on the computation of k-d convex hulls which has a lower

bound complexity of Ω(nk/2) for n objects. 

Recently, Knorr and Ng proposed the notion of distance-based out-
liers [13], [14]. Their notion generalizes many notions from the dis-
tribution-based approaches, and enjoys better computational com-
plexity than the depth-based approaches for larger values of k. Later
in section 3, we will discuss in detail how their notion is different
from the notion of local outliers proposed in this paper. In [17] the
notion of distance based outliers is extended by using the distance
to the k-nearest neighbor to rank the outliers. A very efficient algo-
rithms to compute the top n outliers in this ranking is given, but
their notion of an outlier is still distance-based.

Given the importance of the area, fraud detection has received more
attention than the general area of outlier detection. Depending on
the specifics of the application domains, elaborate fraud models
and fraud detection algorithms have been developed (e.g. [8], [6]).

In contrast to fraud detection, the kinds of outlier detection work
discussed so far are more exploratory in nature. Outlier detection
may indeed lead to the construction of fraud models.

Finally, most clustering algorithms, especially those developed in
the context of KDD (e.g. CLARANS [15], DBSCAN [7], BIRCH
[23], STING [22], WaveCluster [19], DenClue [11], CLIQUE [3]),
are to some extent capable of handling exceptions. However, since
the main objective of a clustering algorithm is to find clusters, they
are developed to optimize clustering, and not to optimize outlier de-
tection. The exceptions (called “noise” in the context of clustering)
are typically just tolerated or ignored when producing the clustering
result. Even if the outliers are not ignored, the notions of outliers are
essentially binary, and there are no quantification as to how outly-
ing an object is. Our notion of local outliers share a few fundamen-
tal concepts with density-based clustering approaches. However,
our outlier detection method does not require any explicit or implic-
it notion of clusters.

3.  PROBLEMS OF EXISTING 
(NON-LOCAL) APPROACHES

As we have seen in section 2, most of the existing work in outlier
detection lies in the field of statistics. Intuitively, outliers can be de-
fined as given by Hawkins [10].

Definition 1: (Hawkins-Outlier)
An outlier is an observation that deviates so much from other
observations as to arouse suspicion that it was generated by a
different mechanism.

This notion is formalized by Knorr and Ng [13] in the following
definition of outliers. Throughout this paper, we use o, p, q to de-
note objects in a dataset. We use the notation d(p, q) to denote the
distance between objects p and q. For a set of objects, we use C
(sometimes with the intuition that C forms a cluster). To simplify
our notation, we use d(p, C) to denote the minimum distance be-
tween p and object q in C, i.e. d(p,C) = min{ d(p,q)  | q ∈ C }.

Definition 2: (DB(pct, dmin)-Outlier)
An object p in a dataset D is a DB(pct, dmin)-outlier if at least
percentage pct of the objects in D lies greater than distance
dmin from p, i.e., the cardinality of the set {q ∈ D | d(p, q) ≤
dmin} is less than or equal to (100− pct)% of the size of D.

The above definition captures only certain kinds of outliers. Be-
cause the definition takes a global view of the dataset, these outliers
can be viewed as “global” outliers. However, for many interesting
real-world datasets which exhibit a more complex structure, there
is another kind of outliers. These can be objects that are outlying
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Figure 1: 2-d dataset DS1
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Angle-based Outlier Detection

Main concept of ABOD is using the variation of the angles
between the each target instance and the rest instances

An outlier or deviated instance will generate a smaller variance
among its associated angles

outlier schema is based on the idea of a change of resolution.
Roughly, the “resolution” specifies the number of objects
considered to be neighbors of a given data object and, thus,
is a data driven concept based on distances rather than on
concepts like the k nearest neighbors or an ε-neighborhood
that rely on user-specified parametrization. An approach
claimed to be suitable for high dimensional data is proposed
in [2]. The idea resembles a grid-based subspace clustering
approach where not dense but sparse grid cells are sought to
report objects within sparse grid cells as outliers. Since this
is exponential in the data dimensionality, an evolutionary al-
gorithm is proposed to search heuristically for sparse cells.As
an extension of the distance based outlier detection, some
algorithms for finding an explanation for the outlierness of a
point are proposed in [19]. The idea is to navigate through
the lattice of combinations of attributes and to find the most
significant combination of attributes where the point is an
outlier. This is an interesting feature because an explicit
and concise explanation why a certain point is considered to
be an outlier (so that a user could conveniently gain some
insights in the nature of the data) has not been provided by
any other outlier detection model so far. In summary, we
find all outlier models proposed so far inherently unsuitable
for the requirements met in mining high-dimensional data
since they rely implicitly or explicitly on distances. Aim-
ing to explain why a point is an outlier, we found only one
other approach proposed in the literature deriving subsets
of attributes where an object is an outlier most significantly,
based on a global outlier model. In the classification of out-
lier models, our new approach is unsupervised and can be
regarded as a local approach. Generally, local outlier detec-
tion models have shown better accuracy than global outlier
detection models. Therefore, as one of the most prominent
local methods, LOF will be used as competitor in compari-
son to our new approach.

3. ANGLE-BASED OUTLIER DETECTION

3.1 General Idea
As elaborated above (see Section 1), comparing distances

becomes more and more meaningless with increasing data di-
mensionality. Thus, mining high-dimensional data requires
different approaches to the quest for patterns. Here, we pro-
pose not only to use the distance between points in a vec-
tor space but primarily the directions of distance vectors.
Comparing the angles between pairs of distance vectors to
other points helps to discern between points similar to other
points and outliers. This idea is motivated by the follow-
ing intuition. Consider a simple data set as illustrated in
Figure 1. For a point within a cluster, the angles between
difference vectors to pairs of other points differ widely. The
variance of the angles will become smaller for points at the
border of a cluster. However, even here the variance is still
relatively high compared to the variance of angles for real
outliers. Here, the angles to most pairs of points will be
small since most points are clustered in some directions.
The corresponding spectra for these three types of points
are illustrated for a sample data set in Figure 2. As the
graph shows, the spectrum of angles to pairs of points re-
mains rather small for an outlier whereas the variance of
angles is higher for border points of a cluster and very high
for inner points of a cluster. As a result of these considera-
tions, an angle-based outlier factor (ABOF) can describe the

66

67

68

69

70

71

72

73

31 32 33 34 35 36 37 38 39 40 41

Figure 1: Intuition of angle-based outlier detection.
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Figure 2: Spectra of angles for different types of
points.

divergence in directions of objects relatively to one another.
If the spectrum of observed angles for a point is broad, the
point will be surrounded by other points in all possible di-
rections meaning the point is positioned inside a cluster. If
the spectrum of observed angles for a point is rather small,
other points will be positioned only in certain directions.
This means, the point is positioned outside of some sets of
points that are grouped together. Thus, rather small angles
for a point �P that are rather similar to one another imply
that �P is an outlier.

3.2 Angle-based Outlier Detection (ABOD)
As an approach to assign the ABOF value to any object

in the database D, we compute the scalar product of the
difference vectors of any triple of points (i.e. a query point
�A ∈ D and all pairs ( �B, �C) of all remaining points in D \
{ �A}) normalized by the quadratic product of the length of
the difference vectors, i.e. the angle is weighted less if the
corresponding points are far from the query point. By this
weighting factor, the distance influences the value after all,
but only to a minor part. Nevertheless, this weighting of
the variance is important since the angle to a pair of points
varies naturally stronger for a bigger distance. The variance
of this value over all pairs for the query point �A constitutes
the angle-based outlier factor (ABOF) of �A. Formally:

Definition 1 (ABOF).

Given a database D ⊆ d, a point �A ∈ D, and a norm
‖.‖ : d → +

0 . The scalar product is denoted by 〈., .〉 :
d × d → . For two points �B, �C ∈ D, BC denotes the

difference vector �C − �B.
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