Introduction to Perceptron Algorithm

Yuh-Jye Lee

Data Science and Machine Intelligence National Chiao-Tung University

March 7, 2017

イロト イポト イヨト イヨト 三日

1/8

Binary Classification Problem

Given a training dataset

Main Goal:

Predict the unseen class label for new data

Find a function $f : \mathbb{R}^n \to \mathbb{R}$ by learning from data

 $f(x) \ge 0 \Rightarrow x \in A_+$ and $f(x) < 0 \Rightarrow x \in A_-$

The simplest function is linear: $f(x) = w^{\top}x + b$

Perceptron Algorithm (Primal Form) Rosenblatt, 1956

• An on-line and mistake-driven procedure Repeat: for i = 1 to ℓ if $y_i(\langle w^k \cdot x^i \rangle + b_k) \leq 0$ then $w^{k+1} \leftarrow w^k + \eta y_i x^i$ $b_{k+1} \leftarrow b_k + \eta y_i R^2$ $k \leftarrow k + 1$ end if $R = \max_{1 \leq i \leq \ell} ||x^i||$

until no mistakes made within the for loop return: k, (w^k, b_k) . What is k ?

$$y_i(\langle w^{k+1} \cdot x^i
angle + b_{k+1}) > y_i(\langle w^k \cdot x^i
angle) + b_k ?$$

 $w^{k+1} \longleftarrow w^k + \eta y_i x^i \text{ and } b_{k+1} \longleftarrow b_k + \eta y_i R^2$

$$y_i(\langle w^{k+1} \cdot x^i \rangle + b_{k+1}) = y_i(\langle (w^k + \eta y_i x^i) \cdot x^i \rangle + b_k + \eta y_i R^2)$$

= $y_i(\langle w^k \cdot x^i \rangle + b_k) + y_i(\eta y_i(\langle x^i \cdot x^i \rangle + R^2))$
= $y_i(\langle w^k \cdot x^i \rangle + b_k) + \eta(\langle x^i \cdot x^i \rangle + R^2)$

・ロト・(型ト・(当ト・(型ト・(ロト

4/8

$$R = \max_{1 \le i \le \ell} \|x^i\|$$

Theorem(Novikoff) Let S be a non-trivial training set, and let

$$R = \max_{1 \le i \le \ell} \|x^i\|$$

Suppose that there exists a vector w_{opt} such that $||w_{opt}|| = 1$ and

$$y_i(\langle w_{opt} \cdot x^i \rangle + b_{opt})$$
 for $1 \le i \le \ell$.

Then the number of mistakes made by the on-line perceptron algorithm on S is almost $\left(\frac{2R}{r}\right)^2$.

Perceptron Algorithm (Dual Form) $w = \sum_{i=1}^{\ell} \alpha_i y_i x^i$

Given a linearly separable training set S and $\alpha = 0$, $\alpha \in \mathbb{R}^{\ell}$, b = 0, $R = \max_{\substack{1 \le i \le \ell \\ 1 \le i \le \ell}} ||x_i||$. Repeat: for i = 1 to ℓ if $y_i (\sum_{j=1}^{\ell} \alpha_j y_j \langle x^j \cdot x^i \rangle + b) \le 0$ then $\alpha_i \leftarrow \alpha_i + 1$; $b \leftarrow b + y_i R^2$ end if end for

Until no mistakes made within the for loop return: (α, b)

What We Got in the Dual Form of Perceptron Algorithm?

- The number of updates equals: $\sum_{i=1}^{t} \alpha_i = \|\alpha\|_1 \le (\frac{2R}{r})^2$
- α_i > 0 implies that the training point (x_i, y_i) has been misclassified in the training process at least once.
- α_i = 0 implies that removing the training point (x_i, y_i) will not affect the final results.
- The training data only appear in the algorithm through the entries of the Gram matrix, $G \in \mathbb{R}^{\ell \times \ell}$ which is defined below:

$$G_{ij} = \langle x_i, x_j \rangle$$

Reference

- C. J. C Burges. "A Tutorial on Support Vector Machines for Pattern Recognition", Data Mining and Knowledge Discovery, Vol. 2, No. 2, (1998) 121-167.
- N. Cristianini and J. Shawe-Taylor. "An Introduction to Support Vector Machines", Cambridge University Press,(2000).