## Machine Learning

Yuh-Jye Lee

Lab of Data Science and Machine Intelligence Dept. of Applied Math. at NCTU

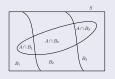
March 1, 2017

# Bayes' Rule

#### Bayes' Rule

Assume that  $\{B_1, B_2, \dots, B_k\}$  is a partition of S such that  $P(B_i) > 0$ , for  $i = 1, 2, \dots, k$ . Then

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^k P(A|B_i)P(B_i)}.$$



## Applying Baye's Rule to Classification

#### Credit Cards Scoring: Low-risk vs. High-risk

- According to the past transactions, some customers are low-risk in that they paid back their loan and the bank profited from them and other customers are high-risk in that they defaulted.
- We would like to learn the class "high-risk customer"
- We observe customer's *yearly income* and *savings*, which we represent by two *random variables*  $X_1$  and  $X_2$
- The *credibility of a customer* is denoted by a *Bernoulli* random variable C where C=1 indicates a high-risk customer and C=0 indicated a low-risk customer

### Applying Baye's Rule to Classification

#### How to make the decision when a new application arrives?

- When a new application arrives with  $X_1 = x_1$  and  $X_2 = x_2$
- If we know the probability of *C* conditioned on the observation  $X = [x_1, x_2]$  our decision will be
  - C = 1 if  $P(C = 1 | [x_1, x_2]) > 0.5$
  - C = 0 otherwise
- The probability of error we made based on this rule is

$$1 - \max\{P(C = 1 | [x_1, x_2]), P(C = 0 | [x_1, x_2])\} < 0.5$$

• Please note  $P(C = 1|[x_1, x_2]) + P(C = 0|[x_1, x_2]) = 1$ 

# The Posterior Probability: $P(C|\mathbf{x}) = \frac{P(C)P(\mathbf{x}|C)}{P(\mathbf{x})}$

- P(C=1) is called the *prior probability* that C=1
- In our example, it corresponds to a probability that a customer is high-risk, regardless of the x value.
- It is called the *prior probability* because it is the knowledge we have *before* looking at the observation x
- P(x|C) is called the class likelihood and is the conditional probability that an event belonging to the class C has the associated observation value x
- P(x), the *evidence* is the probability that an observation x to be seen, regardless of whether it is a positive or negative example

All above information can be extracted from the past transactions (historical data)

# The Posterior Probability: $P(C|\mathbf{x}) = \frac{P(C)P(\mathbf{x}|C)}{P(\mathbf{x})}$

- Because of normalization by the evidence, the posteriors sum up to 1
- In our example,  $P(X_1, X_2)$  is called the *joined probability* of two random variables  $X_1$  and  $X_2$
- Under the assumption, these two random variables  $X_1$  and  $X_2$  are *conditional probability independent*, we have  $P(X_1, X_2 | C) = P(X_1 | C)P(X_2 | C)$
- It is one of key assumptions of Naive Bayes' Classifier
- Although it is over simplified the problem it is very easy to use for real applications

#### Extend to Multi-class classification

- We have K mutually and exhaustive classes;  $C_i$ , i = 1, 2, ..., K
- For example, in *optical digit recognition*, the input is a *bitmap image* and there are 10 classes
- We can think of that these K classes define a partition of the input space
- Please refer to the slides of the Partition Theorem and Baye's Rule
- The Bayes' classifier choose the class with the highest posterior probability; that is we choose C<sub>i</sub> if

$$P(C_i|\mathbf{x}) = \max_k P(C_k|\mathbf{x})$$

• Question: Is it very important to have P(x), the evidence?



# Naïve Bayes for Classification Also Good for Multi-class Classification

- Estimate a *posteriori probability* of class label
- Let each attribute (variable) be a random variable. What is the probibility of

$$Pr(y = 1|\mathbf{x}) = Pr(y = 1|\mathbf{X}_1 = x_1, \mathbf{X}_2 = x_2, \dots, \mathbf{X}_n = x_n)$$

- Naïve Bayes TWO not reasonable assumptions:
  - The importance of each attribute is equal
  - All attributes are conditional probability independent!

$$Pr(y=1|\mathbf{x}) = \frac{1}{Pr(\mathbf{X}=\mathbf{x})} \prod_{i=1}^{n} Pr(\mathbf{X}_i = x_i|y=1)$$

### The Weather Data Example

Ian H. Witten & Eibe Frank, Data Mining

| Outlook  | Temperature | Humidity | Windy | Play(Label) |
|----------|-------------|----------|-------|-------------|
| Sunny    | Hot         | High     | False | -1          |
| Sunny    | Hot         | High     | True  | -1          |
| Overcast | Hot         | High     | False | +1          |
| Rainy    | Mild        | High     | False | +1          |
| Rainy    | Cool        | Normal   | False | +1          |
| Rainy    | Cool        | Normal   | True  | -1          |
| Overcast | Cool        | Normal   | True  | +1          |
| Sunny    | Mild        | High     | False | -1          |
| Sunny    | Cool        | Normal   | False | +1          |
| Rainy    | Mild        | Normal   | False | +1          |
| Sunny    | Mild        | Normal   | True  | +1          |
| Overcast | Mild        | High     | True  | +1          |
| Overcast | Hot         | Normal   | False | +1          |
| Rainy    | Mild        | High     | True  | -1          |

# MLE for Bernoulli Distribution play vs. not play

#### Likelihood Function

The probability to *observe* the random sample  $\mathbf{X} = \{x^t\}_{t=1}^N$  is

$$\prod_{t=1}^{N} p^{x^t} (1-p)^{1-x^t}$$

Why don't we choose the parameter p which will maximize the probability for observing the random sample  $\mathbf{X} = \{x^t\}_{t=1}^N$ ?

Based on MLE, we will choose the parameter p

$$p = \frac{\sum_{t=1}^{N} x^t}{N}$$

#### MLE for Multinomial Distribution

#### Multinomial Distribution: Sunny, Cloudy and Rainy

Consider the generalization of Bernoulli where instead of two possible outcomes, the outcome of a random event is one of k classes, each of which has a probability of occurring  $p_i$  and

 $\sum_{i=1}^{\kappa} p_i = 1. \text{ Let } x_1, x_2, \dots, x_k \text{ be } k \text{ indicator variables where } x_i = 1$  if the outcome is class i and  $x_i = 0$  otherwise. i.e.,

$$P(x_1, x_2, ..., x_k) = \prod_{i=1}^k p_i^{x_i}$$

Let  $\mathbf{X} = \{\mathbf{x^t}\}_{t=1}^N$  be N independent radom experiments. Based on MLE, we will choose the parameter  $\hat{p}_i$ 

$$\hat{\rho}_{i} = \frac{\sum_{t=1}^{N} x_{i}^{t}}{N}, \quad i = 1, 2, \dots k$$

# Probabilities for Weather Data Using Maximum Likelihood Estimation

Based on MLE, we will choose the parameter  $\hat{p}_i$ 

$$\hat{p}_i = \frac{\sum_{t=1}^{N} x_i^t}{N}, \quad i = 1, 2, \dots k$$

| Outlook                    |                   | Temp.                    |                     | Humidity          |                   | Windy          |            |            | Play   |            |            |      |      |
|----------------------------|-------------------|--------------------------|---------------------|-------------------|-------------------|----------------|------------|------------|--------|------------|------------|------|------|
| Play                       | Yes               | No                       |                     | Yes               | No                |                | Yes        | No         |        | Yes        | No         | Yes  | No   |
| Sunny<br>Overcast<br>Rainy | 2/9<br>4/9<br>3/9 | 3/5<br><b>0/5</b><br>2/5 | Hot<br>Mild<br>Cool | 2/9<br>4/9<br>3/9 | 2/5<br>3/5<br>1/5 | High<br>Normal | 3/9<br>6/9 | 4/5<br>1/5 | T<br>F | 3/9<br>6/9 | 3/5<br>2/5 | 9/14 | 5/14 |

Likelihood of the two classes:

$$\textit{Pr}(\textit{y} = 1 | \textit{sunny}, \; \textit{cool}, \; \textit{high}, \; \textit{T}) \propto \frac{2}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{3}{14}$$

$$Pr(y=-1|sunny,\ cool,\ high,\ T) \propto rac{3}{5} \cdot rac{1}{5} \cdot rac{4}{5} \cdot rac{3}{5} \cdot rac{5}{14}$$



### Zero-frequency Problem

- What if an attribute value does NOT occur with a class value?
  - The posterior probability will all be zero! No matter how likely the other attribute values are!
  - Laplace estimator will fix "zero-frequency",  $\frac{k+\lambda}{n+a\lambda}$
- Question: Roll a dice 8 times. The outcomes are as:
  2, 5, 6, 2, 1, 5, 3, 6. What is the probability for showing 4?
  - $Pr(X = 4) = \frac{0 + \lambda}{8 + 6\lambda}, \quad Pr(X = 5) = \frac{2 + \lambda}{8 + 6\lambda}$