Mathematical Background

Yuh-Jye Lee

Data Science \& Machine Intelligence Lab Dept. of Applied Math @ NCTU

February 22, 2017

(1) Probability and Statistics

(2) Probability and Inference

Outline

(1) Probability and Statistics
(2) Probability and Inference

Outline

(1) Probability and Statistics

(2) Probability and Inference

Random Variable

Definition

A random variable is a real-valued function for which domain is a sample space

- Example

For a coin toss, the possible outcome is head or tail. The number of heads appearing in one fair coin toss can be described using the following random variable:

$$
X= \begin{cases}1, & \text { if head } \\ 0, & \text { if tail }\end{cases}
$$

with probability function given by:

$$
P(X=x)= \begin{cases}\frac{1}{2}, & \text { if } x=1 \\ \frac{1}{2}, & \text { if } x=0 \\ 0, & \text { otherwise }\end{cases}
$$

Probability Distribution

Definition

If X is discrete random variable, the function given by $P(X=x)$ for each x within the range of X is called probability distribution of X.

- Example

Let the random variable X be denoted as the total number of heads. The probability distribution of heads obtained in the four tosses of a fair coin can be written as follows:

$$
P(X=x)=\frac{\binom{4}{x}}{2^{4}}, \text { for } x=0,1,2,3,4 .
$$

Probability Density Distribution

Definition

A function with values $f(x)$, defined over the set of all real numbers, is called a probability density function of the continuous random variable X if and only if

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x,
$$

for any real constants a and b with $a \leq b$

- Example

The p.d.f of normal distribution is defined as follows:

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

where μ is the mean and σ is the standard deviation.

Conditional Probability

Definition

The conditional probability of an event A, given that an event B has occurred, is equal to

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- Example

Suppose that a fair die is tossed once. Find the probability of a 1 (event A), given an odd number was obtained (event B).

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 6}{1 / 2}=\frac{1}{3}
$$

- Restrict the sample space on the event B

Theorem

Assume that $\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ is a partition of S such that $P\left(B_{i}\right)>0$, for $i=1,2, \ldots, k$. Then
$P(A)=\sum_{i=1}^{k} P\left(A \mid B_{i}\right) P\left(B_{i}\right)$.

- Note that $\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ is a partition of S if
(1) $S=B_{1} \cup B_{2} \cup \ldots \cup B_{k}$
(2) $B_{i} \cap B_{j}=\emptyset$ for $i \neq j$

Bayes' Rule

Bayes' Rule

Assume that $\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ is a partition of S such that $P\left(B_{i}\right)>0$, for $i=1,2, \ldots, k$. Then

$$
P\left(B_{j} \mid A\right)=\frac{P\left(A \mid B_{j}\right) P\left(B_{j}\right)}{\sum_{i=1}^{k} P\left(A \mid B_{i}\right) P\left(B_{i}\right)} .
$$

Expected Value

Definition

If X is a discrete random variable and $P(X=x)$ is the value of its probability distribution at x, the expected value of X is

$$
\mu=E(X)=\sum_{x} x \cdot P(X=x) .
$$

Correspondingly, if X is a continuous random variable and $f(x)$ is the value of its probability density at x, the expected value of X is

$$
E(X)=\int_{-\infty}^{\infty} x \cdot f(x) d x
$$

- $E(a X+b Y)=a E(X)+b E(Y)$, linear operator

Variance

Measures of how far a set of numbers are spread out

Definition

If X is a discrete random variable and $P(X=x)$ is the value of its probability distribution at x, the expected value of X is

$$
\operatorname{Var}(X)=E\left([X-E(X)]^{2}\right)=\sum_{x}(x-\mu)^{2} \cdot P(X=x) .
$$

Correspondingly, if X is a continuous random variable and $f(x)$ is the value of its probability density at x, the expected value of X is

$$
\operatorname{Var}(X)=\int_{-\infty}^{\infty}(x-\mu)^{2} \cdot f(x) d x
$$

- $\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}$

Bernoulli Distribution

A trial is performed whose outcome is either a "success" or a "failure". The random variable X is a $0 / 1$ indicator variable and takes the value 1 for a success outcome and is 0 otherwise. p is the probability that the result of trail is a success. Then

$$
P(X=1)=p \text { and } P(X=0)=1-p
$$

which can equivalently be written as

$$
P(X=i)=p^{i}(1-p)^{1-i}, i=0,1
$$

Tossing a fair coin, the parameter $p=0.5$. If X is Bernoulli,
(1) $E(X)=p$,
(2) $\operatorname{Var}(X)=p(1-p)$
(3) Who knows p ?

Probability and Inference

- The outcome of tossing a coin is \{Heads, Tails\}
- We use a random variable $X \in\{0,1\}$ to indicate the outcome
- Suppose that we have a random sample: $\mathbf{X}=\left\{x^{t}\right\}_{t=1}^{N}$
- How to estimate the parameter p ?

Maximum Likelihood Estimation

Likelihood Function

The probability to observe the random sample $\mathbf{X}=\left\{x^{t}\right\}_{t=1}^{N}$ is

$$
\prod_{t=1}^{N} p^{x^{t}}(1-p)^{1-x^{t}}
$$

Why don't we choose the parameter p which will maximize the probability for observing the random sample $\mathbf{X}=\left\{x^{t}\right\}_{t=1}^{N}$?

Based on MLE, we will choose the parameter p

$$
p=\frac{\sum_{t=1}^{N} x^{t}}{N}
$$

Sample Mean, Variance, and Standard deviation

Sample Mean

The mean of a sample of n measured responses $y_{1}, y_{2}, \ldots, y_{n}$ is given by

$$
\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

The corresponding population mean is denoted by μ.

Sample Variance

The variance of a sample of measurements $y_{1}, y_{2}, \ldots, y_{n}$ is given by

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} .
$$

The corresponding population variance is denoted by σ^{2}.

Applying Baye's Rule to Classification

Credit Cards Scoring: Low-risk vs. High-risk

- According to the past transactions, some customers are low-risk in that they paid back their loan and the bank profited from them and other customers are high-risk in that they defaulted.
- We would like to learn the class "high-risk customer"
- We observe customer's yearly income and savings, which we represent by two random variables X_{1} and X_{2}
- The credibility of a customer is denoted by a Bernoulli random variable C where $C=1$ indicates a high-risk customer and $C=0$ indicated a low-risk customer

Applying Baye's Rule to Classification

How to make the decision when a new application arrives?

- When a new application arrives with $X_{1}=x_{1}$ and $X_{2}=x_{2}$
- If we know the probability of C conditioned on the observation $X=\left[x_{1}, x_{2}\right]$ our decision will be
- $C=1$ if $P\left(C=1 \mid\left[x_{1}, x_{2}\right]\right)>0.5$
- $C=0$ otherwise
- The probability of error we made based on this rule is

$$
1-\max \left\{P\left(C=1 \mid\left[x_{1}, x_{2}\right]\right), P\left(C=0 \mid\left[x_{1}, x_{2}\right]\right)\right\}<0.5
$$

- Please note $P\left(C=1 \mid\left[x_{1}, x_{2}\right]\right)+P\left(C=0 \mid\left[x_{1}, x_{2}\right]\right)=1$

The Posterior Probability: $P(C \mid \mathbf{x})=\frac{P(C) P(\mathbf{x} \mid C)}{P(\mathbf{x})}$

- $P(C=1)$ is called the prior probability that $C=1$
- In our example, it corresponds to a probability that a customer is high-risk, regardless of the \mathbf{x} value.
- It is called the prior probability because it is the knowledge we have before looking at the observation \mathbf{x}
- $P(\mathbf{x} \mid C)$ is called the class likelihood and is the conditional probability that an event belonging to the class C has the associated observation value \mathbf{x}
- $P(\mathbf{x})$, the evidence is the probability that an observation \mathbf{x} to be seen, regardless of whether it is a positive or negative example

All above information can be extracted from the past transactions (historical data)

The Posterior Probability: $P(C \mid \mathrm{x})=\frac{P(C) P(x) C)}{P(x)}$

- Because of normalization by the evidence, the posteriors sum up to 1
- In our example, $P\left(X_{1}, X_{2}\right)$ is called the joined probability of two random variables X_{1} and X_{2}
- Under the assumption, these two random variables X_{1} and X_{2} are probability independent, we have $P\left(X_{1}, X_{2}\right)=P\left(X_{1}\right) P\left(X_{2}\right)$
- It is one of key assumptions of Naive Bayes' Classifier
- Although it is over simplified the problem it is very easy to use for real applications

Extend to Multi-class classification

- We have K mutually and exhaustive classes;

$$
C_{i}, i=1,2, \ldots, K
$$

- For example, in optical digit recognition, the input is a bitmap image and there are 10 classes
- We can think of that these K classes define a partition of the input space
- Please refer to the slides of the Partition Theorem and Baye's Rule
- The Bayes' classifier choose the class with the highest posterior probability; that is we choose C_{i} if

$$
P\left(C_{i} \mid \mathbf{x}\right)=\max _{k} P\left(C_{k} \mid \mathbf{x}\right)
$$

- Question: Is it very important to have $P(\mathbf{x})$, the evidence?

