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Instance-based Learning

Fundamental philosophy: Two instances that are close to each
other or similar to each other they should share with the
same label

Also known as memory-based learning since what they do is
store the training instances in a lookup table and interpolate
from these.

It requires memory of O(N)

Given an input similar ones should be found and finding them
requires computation of O(N)

Such methods are also called lazy learning algorithms.
Because they do NOT compute a model when they are given
a training set but postpone the computation of the model
until they are given a new test instance (query point)
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k-Nearest Neighbors Classifier

Given a query point xo , we find the k training points
x (i), i = 1, 2, . . . , k closest in distance to xo

Then classify using majority vote among these k neighbors.

Choose k as an odd number to avoid the tie. Ties are broken
at random

If all attributes (features) are real-valued, we can use
Euclidean distance. That is d(x , xo) = ‖x − xo‖2
If the attribute values are discrete, we can use Hamming
distance, which counts the number of nonmatching attributes

d(x , xo) =
n∑

j=1

1(xj 6= xoj ) (1)
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1-Nearest Neighbor Decision Boundary
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Figure: A classification example in two dimensions. The classes are coded as a

binary variable (BLUE=0, ORANGE=1), and then fit by linear regression. The

line is the decision boundary defined by xT β̂ = 0.5. The orange shaded region

denotes that part of input space classified as ORANGE, while the blue region is

classified as Blue. From “The Elements of Statistical Learning, Hastie et al.”
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Figure: The same classification example in two dimensions as in the previous

figure . The classes are coded as a binary variable (BLUE=0, ORANGE=1)

and then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is

hence chosen by majority vote amongst the 15-nearest neighbors. From “The

Elements of Statistical Learning, Hastie et al.”
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Figure: The same classification example in two dimensions as in the previous

figure . The classes are coded as a binary variable (BLUE=0, ORANGE=1),

and then predicted by 1-nearest-neighbor classification. From “The Elements of

Statistical Learning, Hastie et al.”
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(a) 15-Nearest Neighbor Classifier (b) 1-Nearest Neighbor Classifier

Figure: The Comparison between 15-Nearest Neighbor Classifier and 1-Nearest

Neighbor Classifier. From “The Elements of Statistical Learning, Hastie et al.”
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Condensed Nearest Neighbor
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Distance Measure

Using different distance measurements will give very different
results in k-NN algorithm.

Be careful when you compute the distance

We might need to normalize the scale between different
attributes. For example, yearly income vs. daily spend

Typically we first standardize each of the attributes to have
mean zero and variance 1

x̂j =
xj − µj
σj

(2)
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Learning Distance Measure

Finding a distance function d(x i , x j) such that if x i and x j are
belong to the class the distance is small and if they are
belong to the different classes the distance is large.

Euclidean distance: ‖x i − x j‖22 = (x i − x j)>(x i − x j)

Mahalanobis distance: d(x i , x j) = (x i − x j)>M(x i − x j)
where M is a positive semi-definited matrix.

(x i − x j)>M(x i − x j)

= (x i − x j)>L>L(x i − x j)

= (Lx i − Lx j)>(Lx i − Lx j)

The matrix L can be with the size k × n and k << n
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