Optimization

Yuh-Jye Lee

Data Science and Machine Intelligence Lab National Chiao Tung University

March 28, 2017

The Key Idea of Newton's Method

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a twice differentiable function

$$
f(x+d)=f(x)+\nabla f(x)^{\top} d+\frac{1}{2} d^{\top} \nabla^{2} f(x) d+\beta(x, d)\|d\|
$$

where $\lim _{d \rightarrow 0} \beta(x, d)=0$
At $i^{\text {th }}$ iteration, use a quadratic function to approximate

$$
f(x) \approx f\left(x^{i}\right)+\nabla f\left(x^{i}\right)\left(x-x^{i}\right)+\frac{1}{2}\left(x-x^{i}\right)^{\top} \nabla^{2} f\left(x^{i}\right)\left(x-x^{i}\right)
$$

$x^{i+1}=\arg \min \tilde{f}(x)$

Newton's Method

Start with $x^{0} \in \mathbb{R}^{n}$. Having x^{i},stop if $\nabla f\left(x^{i}\right)=0$ Else compute x^{i+1} as follows:
(1) Newton direction: $\quad \nabla^{2} f\left(x^{i}\right) d^{i}=-\nabla f\left(x^{i}\right)$

Have to solve a system of linear equations here!
(2) Updating: $x^{i+1}=x^{i}+d^{i}$

- Converge only when x^{0} is close to x^{*} enough.

Newton's Method with BAD Initial Point

$$
\begin{aligned}
& f(x)=\frac{-1}{6} x^{6}+\frac{1}{4} x^{4}+2 x^{2} \\
& g_{i}(x)=f\left(x^{i}\right)+f^{\prime}\left(x^{i}\right)\left(x-x^{i}\right)+\frac{1}{2} f^{\prime \prime}\left(x^{i}\right)\left(x-x^{i}\right)^{2} \\
& g_{1}(x)=f(1)+4(x-1)+(x-1)^{2} \\
& g_{2}(x)=f(-1)+4(x+1)+(x+1)^{2} \\
& g_{1}^{\prime}(-1)=g_{2}^{\prime}(1)=0
\end{aligned}
$$

It can not converge to the optimal solution.

Constrained Optimization Problem

Problem setting: Given function $f, g_{i}, i=1, \ldots, k$ and h_{j}, $j=1, \ldots, m$, defined on a domain $\Omega \subseteq \mathbb{R}^{n}$,

$$
\begin{array}{cc}
\min _{x \in \Omega} & f(x) \\
\text { s.t. } & g_{i}(x) \leq 0, \quad \forall i \\
& h_{j}(x)=0, \quad \forall j
\end{array}
$$

where $f(x)$ is called the objective function and $g(x) \leq 0, h(x)=0$ are called constrains.

Example I

$$
\begin{array}{cl}
\min & f(x)=2 x_{1}^{2}+x_{2}^{2}+3 x_{3}^{2} \\
\text { s.t. } & 2 x_{1}-3 x_{2}+4 x_{3}=49
\end{array}
$$

<sol>

$$
\begin{gathered}
L(x, \beta)=f(x)+\beta\left(2 x_{1}-3 x_{2}+4 x_{3}-49\right), \beta \in \mathbb{R} \\
\frac{\partial}{\partial x_{1}} L(x, \beta)=0 \Rightarrow 4 x_{1}+2 \beta=0 \\
\frac{\partial}{\partial x_{2}} L(x, \beta)=0 \Rightarrow 2 x_{2}-3 \beta=0 \\
\frac{\partial}{\partial x_{3}} L(x, \beta)=0 \Rightarrow 6 x_{3}+4 \beta=0 \\
2 x_{1}-3 x_{2}+4 x_{3}-49=0 \Rightarrow \beta=-6 \\
\Rightarrow x_{1}=3, x_{2}=-9, x_{3}=4
\end{gathered}
$$

Example II

$$
\begin{gathered}
x_{1}+x_{2} \leq 4 \\
\min _{x \in R^{2}} x_{1}^{2}+x_{2}^{2}-x_{1}-x_{2} \leq-2 \\
x_{1}, x_{2} \geq 0 \\
\nabla f(x)=\left[2 x_{1}, 2 x_{2}\right] \\
\nabla f\left(x^{*}\right)=[2,2]
\end{gathered}
$$

Definitions and Notation

- Feasible region:

$$
\begin{gathered}
\mathcal{F}=\{x \in \Omega \mid g(x) \leq 0, h(x)=0\} \\
\text { where } g(x)=\left[\begin{array}{c}
g_{1}(x) \\
\vdots \\
g_{k}(x)
\end{array}\right] \text { and } h(x)=\left[\begin{array}{c}
h_{1}(x) \\
\vdots \\
h_{m}(x)
\end{array}\right]
\end{gathered}
$$

- A solution of the optimization problem is a point $x^{*} \in \mathcal{F}$ such that $\nexists x \in \mathcal{F}$ for which $f(x)<f\left(x^{*}\right)$ and x^{*} is called a global minimum.

Definitions and Notation

- A point $\bar{x} \in \mathcal{F}$ is called a local minimum of the optimization problem if $\exists \varepsilon>0$ such that

$$
f(x) \geq f(\bar{x}), \quad \forall x \in \mathcal{F} \text { and }\|x-\bar{x}\|<\varepsilon
$$

- At the solution x^{*}, an inequality constraint $g_{i}(x)$ is said to be active if $g_{i}\left(x^{*}\right)=0$, otherwise it is called an inactive constraint.
- $g_{i}(x) \leq 0 \Leftrightarrow g_{i}(x)+\xi_{i}=0, \xi_{i} \geq 0$ where ξ_{i} is called the slack variable

Definitions and Notation

- Remove an inactive constraint in an optimization problem will NOT affect the optimal solution
- Very useful feature in SVM
- If $\mathcal{F}=\mathbb{R}^{n}$ then the problem is called unconstrained minimization problem
- Least square problem is in this category
- SSVM formulation is in this category
- Difficult to find the global minimum without convexity assumption

The Most Important Concepts in Optimization(minimization)

- A point is said to be an optimal solution of a unconstrained minimization if there exists no decent direction
$\Longrightarrow \nabla f\left(x^{*}\right)=0$
- A point is said to be an optimal solution of a constrained minimization if there exists no feasible decent direction \Longrightarrow KKT conditions
- There might exist decent direction but move along this direction will leave out the feasible region

Minimum Principle

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex and continuously differentiable function $\mathcal{F} \subseteq \mathbb{R}^{n}$ be the feasible region.

$$
x^{*} \in \arg \min _{x \in \mathcal{F}} f(x) \Longleftrightarrow \nabla f\left(x^{*}\right)\left(x-x^{*}\right) \geq 0 \quad \forall x \in \mathcal{F}
$$

Example:

$$
\min (x-1)^{2} \quad \text { s.t. } \quad a \leq x \leq b
$$

Example II

$$
\begin{gathered}
x_{1}+x_{2} \leq 4 \\
\min _{x \in R^{2}} x_{1}^{2}+x_{2}^{2}-x_{1}-x_{2} \leq-2 \\
x_{1}, x_{2} \geq 0 \\
\nabla f(x)=\left[2 x_{1}, 2 x_{2}\right] \\
\nabla f\left(x^{*}\right)=[2,2]
\end{gathered}
$$

Linear Programming Problem

- An optimization problem in which the objective function and all constraints are linear functions is called a linear programming problem

$$
\begin{array}{cl}
(\mathrm{LP}) & \min \\
& p^{\top} x \\
\text { s.t. } & A x \leq b \\
& C x=d \\
& L \leq x \leq U
\end{array}
$$

Linear Programming Solver in MATLAB

$\mathrm{X}=\mathrm{LINPROG}(\mathrm{f}, \mathrm{A}, \mathrm{b})$ attempts to solve the linear programming problem:

$$
\min _{x} f^{\prime *} x \text { subject to: } A^{*} x<=b
$$

$\mathrm{X}=\mathrm{LINPROG}(\mathrm{f}, \mathrm{A}, \mathrm{b}$, Aeq,beq) solves the problem above while additionally satisfying the equality constraints Aeq*x $=$ beq.
$X=$ LINPROG(f,A,b,Aeq,beq,LB,UB) defines a set of lower and upper bounds on the design variables, X, so that the solution is in the range $\mathrm{LB}<=\mathrm{X}<=\mathrm{UB}$.
Use empty matrices for LB and UB if no bounds exist. Set $L B(i)=-\ln f$ if $X(i)$ is unbounded below; set $U B(i)=\operatorname{Inf}$ if $X(i)$ is unbounded above.

Linear Programming Solver in MATLAB

$\mathrm{X}=\mathrm{LINPROG}(\mathrm{f}, \mathrm{A}, \mathrm{b}$, Aeq, beq, LB, UB, X0) sets the starting point to X 0 . This option is only available with the active-set algorithm. The default interior point algorithm will ignore any non-empty starting point.

You can type "help linprog" in MATLAB to get more information!

L_{1}-Approximation: $\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{1}$

$$
\|z\|_{1}=\sum_{i=1}^{m}\left|z_{i}\right|
$$

$\min \mathbf{1}^{\top} s$
x, s
$\operatorname{Or} \quad \min _{x, s} \sum_{i=1}^{m} s_{i}$
s.t. $-s \leq A x-b \leq s$
s.t. $-s_{i} \leq A_{i} x-b_{i} \leq s_{i} \forall i$

$$
\begin{aligned}
& \min _{x, s}\left[\begin{array}{llllll}
0 & \cdots & 0 & 1 & \cdots & 1
\end{array}\right]\left[\begin{array}{l}
x \\
s
\end{array}\right] \\
& \text { s.t. }\left[\begin{array}{cc}
A & -I \\
-A & -l
\end{array}\right]_{2 m \times(n+m)}\left[\begin{array}{c}
x \\
s
\end{array}\right] \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]
\end{aligned}
$$

Chebyshev Approximation: $\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{\infty}$

$$
\|z\|_{\infty}=\max _{1 \leq i \leq m}\left|z_{i}\right|
$$

$$
\begin{aligned}
& \min _{x, \gamma} \gamma \\
& \text { s.t. }-\mathbf{1} \gamma \leq A x-b \leq \mathbf{1} \gamma \\
& \min _{x, s}\left[\begin{array}{llll}
0 & \cdots & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
\gamma
\end{array}\right] \\
& \text { s.t. }\left[\begin{array}{cc}
A & -\mathbf{1} \\
-A & -\mathbf{1}
\end{array}\right]_{2 m \times(n+1)}\left[\begin{array}{l}
x \\
\gamma
\end{array}\right] \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]
\end{aligned}
$$

Quadratic Programming Problem

- If the objective function is convex quadratic while the constraints are all linear then the problem is called convex quadratic programming problem

$$
\begin{array}{rll}
\text { (QP) } \quad \min & \frac{1}{2} x^{\top} Q x+p^{\top} x \\
\text { s.t. } & A x \leq b \\
& C x=d \\
& L \leq x \leq U
\end{array}
$$

Quadratic Programming Solver in MATLAB

$\mathrm{X}=\mathrm{QUADPROG}(\mathrm{H}, \mathrm{f}, \mathrm{A}, \mathrm{b})$ attempts to solve the quadratic programming problem:

```
min
```

$\mathrm{X}=$ QUADPROG(H,f,A,b,Aeq,beq) solves the problem above while additionally satisfying the equality constraints Aeq* $x=$ beq.
$\mathrm{X}=\mathrm{QUADPROG}(\mathrm{H}, \mathrm{f}, \mathrm{A}, \mathrm{b}$, Aeq,beq,LB,UB) defines a set of lower and upper bounds on the design variables, X , so that the solution is in the range $\mathrm{LB}<=\mathrm{X}<=\mathrm{UB}$.
Use empty matrices for LB and UB if no bounds exist. Set $L B(i)=-\operatorname{Inf}$ if $X(i)$ is unbounded below; set $U B(i)=\operatorname{Inf}$ if $X(i)$ is unbounded above.

Quadratic Programming Solver in MATLAB

$\mathrm{X}=\mathrm{QUADPROG}(\mathrm{H}, \mathrm{f}, \mathrm{A}, \mathrm{b}$, Aeq, beq,LB,UB,X0) sets the starting point to $\mathrm{X0}$.

You can type "help quadprog" in MATLAB to get more information!

Standard Support Vector Machine

$$
\min _{w, b, b \xi_{A}, \xi_{B}} C\left(\mathbf{1}^{\top} \xi_{A}+\mathbf{1}^{\top} \xi_{B}\right)+\frac{1}{2}\|w\|_{2}^{2}
$$

$$
\begin{aligned}
& (A w+\mathbf{1} b)+\xi_{A} \geq \mathbf{1} \\
& (B w+\mathbf{1} b)-\xi_{B} \leq-\mathbf{1} \\
& \xi_{A} \geq 0, \xi_{B} \geq 0
\end{aligned}
$$

Farkas' Lemma

For any matrix $A \in \mathbb{R}^{m \times n}$ and any vector $b \in \mathbb{R}^{n}$, either

$$
A x \leq 0, \quad b^{\top} x>0 \text { has a solution }
$$

or

$$
A^{\top} \alpha=b, \quad \alpha \geq 0 \text { has a solution }
$$

but never both.

Farkas' Lemma

$A x \leq \mathbf{0}, b^{\top} x>0$ has a solution

b is NOT in the cone generated by A_{1} and A_{2}

Farkas' Lemma

$A^{\top} \alpha=b, \alpha \geq 0$ has a solution
b is in the cone generated by A_{1} and A_{2}

$$
\left\{x \mid b^{\top} x>0\right\} \cap\{x \mid A x \leq 0\}=\emptyset
$$

$$
\left\{x \mid b^{\top}>0\right\} \cap\{x \mid A x \leq 0\}=\emptyset
$$

Minimization Problem

VS.

Kuhn-Tucker Stationary-point Problem

MP:

$$
\begin{array}{cc}
\min _{x \in \Omega} & f(x) \\
\text { s.t. } & g(x) \leq 0
\end{array}
$$

KTSP:
Find $\quad \bar{x} \in \Omega, \bar{\alpha} \in \mathbb{R}^{m}$ such that

$$
\nabla f(\bar{x})+\bar{\alpha}^{\top} \nabla g(\bar{x})=0
$$

$$
\bar{\alpha}^{\top} g(\bar{x})=0
$$

$$
g(\bar{x}) \leq 0
$$

$$
\bar{\alpha} \geq 0
$$

Lagrangian Function
 $\mathcal{L}(x, \alpha)=f(x)+\alpha^{\top} g(x)$

Let $\mathcal{L}(x, \alpha)=f(x)+\alpha^{\top} g(x)$ and $\alpha \geq 0$

- If $f(x), g(x)$ are convex the $\mathcal{L}(x, \alpha)$ is convex.
- For a fixed $\alpha \geq 0$, if $\bar{x} \in \arg \min \left\{\mathcal{L}(x, \alpha) \mid x \in \mathbb{R}^{n}\right\}$
then

$$
\left.\frac{\partial \mathcal{L}(x, \alpha)}{\partial x}\right|_{x=\bar{x}}=\nabla f(\bar{x})+\alpha^{\top} \nabla g(\bar{x})=0
$$

- Above result is a sufficient condition if $\mathcal{L}(x, \alpha)$ is convex.

KTSP with Equality Constraints?

(Assume $h(x)=0$ are linear functions)

$$
h(x)=0 \Leftrightarrow h(x) \leq 0 \text { and }-h(x) \leq 0
$$

KTSP:
Find $\quad \bar{x} \in \Omega, \bar{\alpha} \in \mathbb{R}^{k}, \bar{\beta}_{+}, \bar{\beta}_{-} \in \mathbb{R}^{m}$ such that

$$
\begin{aligned}
& \nabla f(\bar{x})+\bar{\alpha}^{\top} \nabla g(\bar{x})+\left(\bar{\beta}_{+}-\bar{\beta}_{-}\right)^{\top} \nabla h(\bar{x})=0 \\
& \bar{\alpha}^{\top} g(\bar{x})=0,\left(\bar{\beta}_{+}\right)^{\top} h(\bar{x})=0,\left(\bar{\beta}_{-}\right)^{\top}(-h(\bar{x}))=0 \\
& g(\bar{x}) \leq 0, h(\bar{x})=0 \\
& \bar{\alpha} \geq 0, \bar{\beta}_{+}, \bar{\beta}_{-} \geq 0
\end{aligned}
$$

KTSP with Equality Constraints

KTSP:

Find $\quad \bar{x} \in \Omega, \bar{\alpha} \in \mathbb{R}^{k}, \bar{\beta} \in \mathbb{R}^{m}$ such that

$$
\nabla f(\bar{x})+\bar{\alpha}^{\top} \nabla g(\bar{x})+\bar{\beta} \nabla h(\bar{x})=0
$$

$$
\bar{\alpha}^{\top} g(\bar{x})=0, g(\bar{x}) \leq 0, h(\bar{x})=0
$$

$$
\bar{\alpha} \geq 0
$$

- Let $\bar{\beta}=\bar{\beta}_{+}-\bar{\beta}_{-}$and $\bar{\beta}_{+}, \bar{\beta}_{-} \geq 0$
then $\bar{\beta}$ is free variable

Generalized Lagrangian Function $\mathcal{L}(x, \alpha, \beta)=f(x)+\alpha^{\top} g(x)+\beta^{\top} h(x)$

Let $\mathcal{L}(x, \alpha, \beta)=f(x)+\alpha^{\top} g(x)+\beta^{\top} h(x)$ and $\alpha \geq 0$

- If $f(x), g(x)$ are convex and $h(x)$ is linear then $\mathcal{L}(x, \alpha, \beta)$ is convex.
- For fixed $\alpha \geq 0$, if $\bar{x} \in \arg \min \left\{\mathcal{L}(x, \alpha, \beta) \mid x \in \mathbb{R}^{n}\right\}$ then

$$
\left.\frac{\partial \mathcal{L}(x, \alpha, \beta)}{\partial x}\right|_{x=\bar{x}}=\nabla f(\bar{x})+\alpha^{\top} \nabla g(\bar{x})+\beta^{\top} \nabla h(\bar{x})=0
$$

- Above result is a sufficient condition if $\mathcal{L}(x, \alpha, \beta)$ is convex.

Lagrangian Dual Problem

$$
\begin{aligned}
\max _{\alpha, \beta} \min _{x \in \Omega} & \mathcal{L}(x, \alpha, \beta) \\
\text { s.t. } & \alpha \geq 0
\end{aligned}
$$

Lagrangian Dual Problem

$$
\begin{aligned}
\max _{\alpha, \beta} \min _{x \in \Omega} & \mathcal{L}(x, \alpha, \beta) \\
\text { s.t. } & \alpha \geq 0
\end{aligned}
$$

I

$$
\begin{aligned}
\max _{\alpha, \beta} & \theta(\alpha, \beta) \\
\text { s.t. } & \alpha \geq 0 \\
\text { where } & \theta(\alpha, \beta)=\inf _{x \in \Omega} \mathcal{L}(x, \alpha, \beta)
\end{aligned}
$$

Weak Duality Theorem

Let $\bar{x} \in \Omega$ be a feasible solution of the primal problem and (α, β) a feasible sulution of the dual problem. then $f(\bar{x}) \geq \theta(\alpha, \beta)$

$$
\theta(\alpha, \beta)=\inf _{x \in \Omega} \mathcal{L}(x, \alpha, \beta) \leq \mathcal{L}(\tilde{x}, \alpha, \beta)
$$

Corollary:

$$
\sup \{\theta(\alpha, \beta) \mid \alpha \geq 0\} \leq \inf \{f(x) \mid g(x) \leq 0, h(x)=0\}
$$

Weak Duality Theorem

Corollary
If $f\left(x^{*}\right)=\theta\left(\alpha^{*}, \beta^{*}\right)$ where $\alpha^{*} \geq \mathbf{0}$ and $g\left(x^{*}\right) \leq \mathbf{0}, h\left(x^{*}\right)=\mathbf{0}$,then x^{*} and $\left(\alpha^{*}, \beta^{*}\right)$ solve the primal and dual problem respectively. In this case,

$$
\mathbf{0} \leq \alpha \perp g(x) \leq \mathbf{0}
$$

Saddle Point of Lagrangian

Let $x^{*} \in \Omega, \alpha^{*} \geq \mathbf{0}, \beta^{*} \in \mathbb{R}^{m}$ satisfying

$$
\mathcal{L}\left(x^{*}, \alpha, \beta\right) \leq \mathcal{L}\left(x^{*}, \alpha^{*}, \beta^{*}\right) \leq \mathcal{L}\left(x, \alpha^{*}, \beta^{*}\right), \forall x \in \Omega, \alpha \geq \mathbf{0}
$$

Then $\left(x^{*}, \alpha^{*}, \beta^{*}\right)$ is called The saddle point of the Lagrangian function

Saddle Point of $f(x, y)=x^{2}-y^{2}$

Dual Problem of Linear Program

$$
\begin{array}{lll}
\text { Primal LP } & \min _{x \in \mathbb{R}^{n}} & p^{\top} x \\
& \text { subject to } & A x \geq b, x \geq \mathbf{0} \\
\text { Dual LP } & \max _{\alpha \in \mathbb{R}^{m}} & b^{\top} \alpha \\
& \text { subject to } & A^{\top} \alpha \leq p, \alpha \geq \mathbf{0}
\end{array}
$$

- All duality theorems hold and work perfectly!

Lagrangian Function of Primal LP $\mathcal{L}(x, \alpha)=p^{\top} x+\alpha_{1}^{\top}(b-A x)+\alpha_{2}^{\top}(-x)$

$$
\max _{\alpha_{1}, \alpha_{2} \geq \mathbf{0}} \min _{x \in \mathbb{R}^{n}} \mathcal{L}\left(x, \alpha_{1}, \alpha 2\right)
$$

$$
\Uparrow
$$

$$
\max _{\alpha_{1}, \alpha_{2} \geq \mathbf{0}} \quad p^{\top} x+\alpha_{1}^{\top}(b-A x)+\alpha_{2}^{\top}(-x)
$$

subject to $\quad p-A^{\top} \alpha_{1}-\alpha_{2}=\mathbf{0}$

$$
\left(\nabla_{x} \mathcal{L}\left(x, \alpha_{1}, \alpha_{2}\right)=\mathbf{0}\right)
$$

Application of LP Duality LSQ - NormalEquation Always Has a Solution

For any matrix $A \in \mathbb{R}^{m \times n}$ and any vector $b \in \mathbb{R}^{m}$, consider $\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}$

$$
x^{*} \in \arg \min \left\{\|A x-b\|_{2}^{2}\right\} \Leftrightarrow A^{\top} A x^{*}=A^{\top} b
$$

Claim : $A^{\top} A x=A^{\top} b$ always has a solution.

Dual Problem of Strictly Convex Quadratic Program

Primal QP

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{n}} & \frac{1}{2} x^{\top} Q x+p^{\top} x \\
\text { s.t. } & A x \leq b
\end{aligned}
$$

With strictlyconvex assumption, we have

Dual QP

$$
\begin{array}{cl}
\max & -\frac{1}{2}\left(p^{\top}+\alpha^{\top} A\right) Q^{-1}\left(A^{\top} \alpha+p\right)-\alpha^{\top} b \\
\text { s.t. } & \alpha \geq \mathbf{0}
\end{array}
$$

