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The Key Idea of Newton’s Method

Let f : Rn −→ R be a twice differentiable function

f (x + d) = f (x) +∇f (x)>d +
1

2
d>∇2f (x)d + β(x , d) ‖ d ‖

where lim
d→0

β(x , d) = 0

At i th iteration, use a quadratic function to approximate

f (x) ≈ f (x i ) +∇f (x i )(x − x i ) +
1

2
(x − x i )>∇2f (x i )(x − x i )

x i+1 = arg min f̃ (x)
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Newton’s Method

Start with x0 ∈ Rn. Having x i ,stop if ∇f (x i ) = 0
Else compute x i+1 as follows:

1 Newton direction: ∇2f (x i )d i = −∇f (x i )
Have to solve a system of linear equations here!

2 Updating: x i+1 = x i + d i

Converge only when x0 is close to x∗ enough.
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Newton’s Method with BAD Initial Point

It can not converge to the optimal solution.

f(x) = à 6
1x 6 + 4

1x 4 + 2x 2

g(x) = f(xi) + f0(xi)(x à xi) + 2
1 f00(xi)(x à xi)f (x) = −1

6 x6 + 1
4x

4 + 2x2

gi (x) = f (x i ) + f ′(x i )(x − x i ) + 1
2 f
′′(x i )(x − x i )2

g1(x) = f (1) + 4(x − 1) + (x − 1)2

g2(x) = f (−1) + 4(x + 1) + (x + 1)2

g ′1(−1) = g ′2(1) = 0
It can not converge to the optimal solution.
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Constrained Optimization Problem

Problem setting: Given function f , gi , i = 1, ..., k and hj ,
j = 1, ...,m, defined on a domain Ω ⊆ Rn,

min
x∈Ω

f (x)

s.t. gi (x) ≤ 0, ∀i
hj(x) = 0, ∀j

where f (x) is called the objective function and g(x) ≤ 0, h(x) = 0
are called constrains.
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Example I

min f (x) = 2x2
1 + x2

2 + 3x2
3

s.t. 2x1 − 3x2 + 4x3 = 49

<sol>
L(x , β) = f (x) + β(2x1 − 3x2 + 4x3 − 49), β ∈ R

∂

∂x1
L(x , β) = 0 ⇒ 4x1 + 2β = 0

∂

∂x2
L(x , β) = 0 ⇒ 2x2 − 3β = 0

∂

∂x3
L(x , β) = 0 ⇒ 6x3 + 4β = 0

2x1 − 3x2 + 4x3 − 49 = 0⇒ β = −6
⇒ x1 = 3, x2 = −9, x3 = 4
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Example II

x1 + x2 ≤ 4

−x1 − x2 ≤ −2
x1, x2 ≥ 0

∇f (x) = [2x1, 2x2]

min
x∈R2

x21 + x22

∇f (x∗) = [2, 2]
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Definitions and Notation

Feasible region:

F = {x ∈ Ω | g(x) ≤ 0, h(x) = 0}

where g(x) =

 g1(x)
...

gk(x)

 and h(x) =

 h1(x)
...

hm(x)


A solution of the optimization problem is a point x∗ ∈ F such
that @x ∈ F for which f (x) < f (x∗) and x∗ is called a global
minimum.
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Definitions and Notation

A point x̄ ∈ F is called a local minimum of the optimization
problem if ∃ε > 0 such that

f (x) ≥ f (x̄), ∀x ∈ F and ‖x − x̄‖ < ε

At the solution x∗, an inequality constraint gi (x) is said to be
active if gi (x

∗) = 0, otherwise it is called an inactive
constraint.

gi (x) ≤ 0 ⇔ gi (x) + ξi = 0, ξi ≥ 0 where ξi is called the slack
variable
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Definitions and Notation

Remove an inactive constraint in an optimization problem will
NOT affect the optimal solution

Very useful feature in SVM

If F = Rn then the problem is called unconstrained
minimization problem

Least square problem is in this category
SSVM formulation is in this category
Difficult to find the global minimum without convexity
assumption
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The Most Important Concepts in
Optimization(minimization)

A point is said to be an optimal solution of a unconstrained
minimization if there exists no decent direction
=⇒ ∇f (x∗) = 0

A point is said to be an optimal solution of a constrained
minimization if there exists no feasible decent direction
=⇒ KKT conditions

There might exist decent direction but move along this
direction will leave out the feasible region
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Minimum Principle

Let f : Rn → R be a convex and continuously differentiable
function F ⊆ Rn be the feasible region.

x∗ ∈ arg min
x∈F

f (x)⇐⇒ ∇f (x∗)(x − x∗) ≥ 0 ∀x ∈ F

Example:

min(x − 1)2 s.t. a ≤ x ≤ b
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Example II

x1 + x2 ≤ 4

−x1 − x2 ≤ −2
x1, x2 ≥ 0

∇f (x) = [2x1, 2x2]

min
x∈R2

x21 + x22

∇f (x∗) = [2, 2]
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Linear Programming Problem

An optimization problem in which the objective function and
all constraints are linear functions is called a linear
programming problem

(LP) min p>x

s.t. Ax ≤ b

Cx = d

L ≤ x ≤ U
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Linear Programming Solver in MATLAB

X=LINPROG(f,A,b) attempts to solve the linear programming
problem:

min
x

f’*x subject to: A*x <= b

X=LINPROG(f,A,b,Aeq,beq) solves the problem above while
additionally satisfying the equality constraints Aeq*x = beq.

X=LINPROG(f,A,b,Aeq,beq,LB,UB) defines a set of lower and
upper bounds on the design variables, X, so that the solution
is in the range LB <= X <= UB.
Use empty matrices for LB and UB if no bounds exist. Set
LB(i) = -Inf if X(i) is unbounded below; set UB(i) = Inf if X(i)
is unbounded above.
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Linear Programming Solver in MATLAB

X=LINPROG(f,A,b,Aeq,beq,LB,UB,X0) sets the starting point
to X0. This option is only available with the active-set al-
gorithm. The default interior point algorithm will ignore any
non-empty starting point.

You can type “help linprog” in MATLAB to get more information!
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L1-Approximation: min
x∈Rn
‖Ax − b‖1

‖z‖1 =
m∑
i=1
|zi |

min
x ,s

1>s

s.t. −s ≤ Ax − b ≤ s
Or

min
x ,s

m∑
i=1

si

s.t. −si ≤ Aix − bi ≤ si ∀i

min
x ,s

[
0 · · · 0 1 · · · 1

] [x
s

]
s.t.

[
A −I
−A −I

]
2m×(n+m)

[
x
s

]
≤
[
b
−b

]
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Chebyshev Approximation: min
x∈Rn
‖Ax − b‖∞

‖z‖∞ = max
1≤i≤m

|zi |

min
x ,γ

γ

s.t. − 1γ ≤ Ax − b ≤ 1γ

min
x ,s

[
0 · · · 0 1

] [x
γ

]
s.t.

[
A −1
−A −1

]
2m×(n+1)

[
x
γ

]
≤
[
b
−b

]
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Quadratic Programming Problem

If the objective function is convex quadratic while the
constraints are all linear then the problem is called convex
quadratic programming problem

(QP) min
1

2
x>Qx + p>x

s.t. Ax ≤ b

Cx = d

L ≤ x ≤ U
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Quadratic Programming Solver in MATLAB

X=QUADPROG(H,f,A,b) attempts to solve the quadratic pro-
gramming problem:

min
x

0.5*x’*H*x+f’*x subject to: A*x <= b

X=QUADPROG(H,f,A,b,Aeq,beq) solves the problem
above while additionally satisfying the equality constraints
Aeq*x=beq.

X=QUADPROG(H,f,A,b,Aeq,beq,LB,UB) defines a set of
lower and upper bounds on the design variables, X, so that
the solution is in the range LB <= X <= UB.
Use empty matrices for LB and UB if no bounds exist. Set
LB(i) = -Inf if X(i) is unbounded below; set UB(i) = Inf if X(i)
is unbounded above.
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Quadratic Programming Solver in MATLAB

X=QUADPROG(H,f,A,b,Aeq,beq,LB,UB,X0) sets the starting
point to X0.

You can type “help quadprog” in MATLAB to get more
information!
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Standard Support Vector Machine

min
w ,b,ξA,ξB

C (1>ξA + 1>ξB) +
1

2
‖w‖2

2

(Aw + 1b) + ξA ≥ 1

(Bw + 1b)− ξB ≤ −1
ξA ≥ 0, ξB ≥ 0
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Farkas’ Lemma

For any matrix A ∈ Rm×n and any vector b ∈ Rn, either

Ax ≤ 0, b>x > 0 has a solution

or
A>α = b, α ≥ 0 has a solution

but never both.
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Farkas’ Lemma
Ax ≤ 0, b>x > 0 has a solution

b is NOT in the cone generated by A1 and A2

A1

A2

b

Solution Area

{x|b>x > 0} ∩ {x|Ax ≤ 0} 6= 0
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Farkas’ Lemma
A>α = b, α ≥ 0 has a solution
b is in the cone generated by A1 and A2

{x |b>x > 0} ∩ {x |Ax ≤ 0} = ∅

A1

A2

b

{x|b> > 0} ∩ {x|Ax ≤ 0} = ∅
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Minimization Problem
vs.
Kuhn-Tucker Stationary-point Problem

MP:

min
x∈Ω

f (x)

s.t. g(x) ≤ 0

KTSP:

Find x̄ ∈ Ω, ᾱ ∈ Rm such that

∇f (x̄) + ᾱ>∇g(x̄) = 0

ᾱ>g(x̄) = 0

g(x̄) ≤ 0

ᾱ ≥ 0
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Lagrangian Function
L(x , α) = f (x) + α>g(x)

Let L(x , α) = f (x) + α>g(x) and α ≥ 0

If f (x), g(x) are convex the L(x , α) is convex.

For a fixed α ≥ 0, if x̄ ∈ arg min{L(x , α)|x ∈ Rn}
then

∂L(x , α)

∂x

∣∣∣
x=x̄

= ∇f (x̄) + α>∇g(x̄) = 0

Above result is a sufficient condition if L(x , α) is convex.
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KTSP with Equality Constraints?
(Assume h(x) = 0 are linear functions)

h(x) = 0 ⇔ h(x) ≤ 0 and −h(x) ≤ 0

KTSP:

Find x̄ ∈ Ω, ᾱ ∈ Rk , β̄+, β̄− ∈ Rm such that

∇f (x̄) + ᾱ>∇g(x̄) + (β̄+ − β̄−)>∇h(x̄) = 0

ᾱ>g(x̄) = 0, (β̄+)>h(x̄) = 0, (β̄−)>(−h(x̄)) = 0

g(x̄) ≤ 0, h(x̄) = 0

ᾱ ≥ 0, β̄+, β̄− ≥ 0
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KTSP with Equality Constraints

KTSP:

Find x̄ ∈ Ω, ᾱ ∈ Rk , β̄ ∈ Rm such that

∇f (x̄) + ᾱ>∇g(x̄) + β̄∇h(x̄) = 0

ᾱ>g(x̄) = 0, g(x̄) ≤ 0, h(x̄) = 0

ᾱ ≥ 0

Let β̄ = β̄+ − β̄− and β̄+, β̄− ≥ 0
then β̄ is free variable
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Generalized Lagrangian Function
L(x , α, β) = f (x) + α>g(x) + β>h(x)

Let L(x , α, β) = f (x) + α>g(x) + β>h(x) and α ≥ 0

If f (x), g(x) are convex and h(x) is linear then L(x , α, β) is
convex.

For fixed α ≥ 0, if x̄ ∈ arg min{L(x , α, β)|x ∈ Rn}
then

∂L(x , α, β)

∂x

∣∣∣
x=x̄

= ∇f (x̄) + α>∇g(x̄) + β>∇h(x̄) = 0

Above result is a sufficient condition if L(x , α, β) is convex.
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Lagrangian Dual Problem

max
α,β

min
x∈Ω

L(x , α, β)

s.t. α ≥ 0

m

max
α,β

θ(α, β)

s.t. α ≥ 0

where θ(α, β) = inf
x∈Ω
L(x , α, β)
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Lagrangian Dual Problem

max
α,β

min
x∈Ω

L(x , α, β)

s.t. α ≥ 0

m

max
α,β

θ(α, β)

s.t. α ≥ 0

where θ(α, β) = inf
x∈Ω
L(x , α, β)
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Weak Duality Theorem

Let x̄ ∈ Ω be a feasible solution of the primal problem and (α, β) a
feasible sulution of the dual problem. then f (x̄) ≥ θ(α, β)

θ(α, β) = inf
x∈Ω
L(x , α, β) ≤ L(x̃ , α, β)

Corollary:

sup{θ(α, β)|α ≥ 0} ≤ inf{f (x)|g(x) ≤ 0, h(x) = 0}
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Weak Duality Theorem

Corollary

If f (x∗) = θ(α∗, β∗) where α∗ ≥ 0 and g(x∗) ≤ 0 , h(x∗) = 0
,then x∗ and (α∗, β∗) solve the primal and dual problem
respectively. In this case,

0 ≤ α ⊥ g(x) ≤ 0
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Saddle Point of Lagrangian

Let x∗ ∈ Ω,α∗ ≥ 0, β∗ ∈ Rm satisfying

L(x∗, α, β) ≤ L(x∗, α∗, β∗) ≤ L(x , α∗, β∗) , ∀x ∈ Ω , α ≥ 0

Then (x∗, α∗, β∗) is called The saddle point of the Lagrangian
function
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Saddle Point of f (x , y) = x2 − y 2

Saddle point  of 22),( yxyxf −=

36 / 40



Dual Problem of Linear Program

Primal LP min
x∈Rn

p>x

subject to Ax ≥ b , x ≥ 0

Dual LP max
α∈Rm

b>α

subject to A>α ≤ p , α ≥ 0

All duality theorems hold and work perfectly!
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Lagrangian Function of Primal LP
L(x , α) = p>x + α>1 (b − Ax) + α>2 (−x)

max
α1,α2≥0

min
x∈Rn
L(x , α1, α2)

m

max
α1,α2≥0

p>x + α>1 (b − Ax) + α>2 (−x)

subject to p − A>α1 − α2 = 0

(∇xL(x , α1, α2) = 0)
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Application of LP Duality
LSQ − NormalEquation Always Has a Solution

For any matrix A ∈ Rmxn and any vector b ∈ Rm ,
consider min

x∈Rn
‖Ax − b‖2

2

x∗ ∈ arg min{‖Ax − b‖2
2} ⇔ A>Ax∗ = A>b

Claim : A>Ax = A>b always has a solution.
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Dual Problem of Strictly Convex Quadratic Program

Primal QP

min
x∈Rn

1

2
x>Qx + p>x

s.t. Ax ≤ b

With strictlyconvex assumption, we have

Dual QP

max −1

2
(p> + α>A)Q−1(A>α + p)− α>b

s.t. α ≥ 0
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