Optimization

Yuh-Jye Lee

Data Science and Machine Intelligence Lab National Chiao Tung University

March 21, 2017

You Have Learned (Unconstrained) Optimization in Your High School

Let $f(x)=a x^{2}+b x+c, a \neq 0, x^{*}=-\frac{b}{2 a}$
Case 1: $f^{\prime \prime}\left(x^{*}\right)=2 a>0 \Rightarrow x^{*} \in \arg \min _{x \in \mathbb{R}} f(x)$
Case 2: $f^{\prime \prime}\left(x^{*}\right)=2 a<0 \Rightarrow x^{*} \in \arg \max _{x \in \mathbb{R}} f(x)$
For minimization problem (Case I),

- $f^{\prime}\left(x^{*}\right)=0$ is called the first order optimality condition.
- $f^{\prime \prime}\left(x^{*}\right)>0$ is the second order optimality condition.

Optimization Examples in Machine Learning

(1) Maximum likelihood estimation
(2) Maximum a posteriori estimation
(3) Least squares estimates
(9) Gradient descent method
(5) Backpropagation

Gradient and Hessian

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function. The gradient of function f at a point $x \in \mathbb{R}^{n}$ is defined as

$$
\nabla f(x)=\left[\frac{\partial f(x)}{\partial x_{1}}, \frac{\partial f(x)}{\partial x_{2}}, \ldots, \frac{\partial f(x)}{\partial x_{n}}\right] \in \mathbb{R}^{n}
$$

- If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a twice differentiable function. The Hessian matrix of f at a point $x \in \mathbb{R}^{n}$ is defined as

$$
\nabla^{2} f(x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

Example of Gradient and Hessian

$$
\begin{aligned}
f(x) & =x_{1}^{2}+x_{2}^{2}-2 x_{1}+4 x_{2} \\
& =\frac{1}{2}\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{ll}
-2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
\nabla f(x) & =\left[\begin{array}{ll}
2 x_{1}-2 & 2 x_{2}+4
\end{array}\right], \nabla^{2} f(x)=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
\end{aligned}
$$

By letting $\nabla f(x)=0$, we have $x^{*}=\left[\begin{array}{c}1 \\ -2\end{array}\right] \in \arg \min _{x \in \mathbb{R}^{2}} f(x)$

Quadratic Functions (Standard Form)

 $f(x)=\frac{1}{2} x^{\top} H x+p^{\top} x$Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $f(x)=\frac{1}{2} x^{\top} H x+p^{\top} x$ where $H \in \mathbb{R}^{n \times n}$ is a symmetric matrix and $p \in \mathbb{R}^{n}$ then

$$
\begin{gathered}
\nabla f(x)=H x+p \\
\nabla^{2} f(x)=H(\text { Hessian })
\end{gathered}
$$

Note: If H is positive definite, then $x^{*}=-H^{-1} p$ is the unique solution of $\min f(x)$.

Least-squares Problem

 $\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$$$
\begin{aligned}
f(x) & =(A x-b)^{\top}(A x-b) \\
& =x^{\top} A^{\top} A x-2 b^{\top} A x+b^{\top} b \\
\nabla f(x) & =2 A^{\top} A x-2 A^{\top} b \\
\nabla^{2} f(x) & =2 A^{\top} A \\
x^{*} & =\left(A^{\top} A\right)^{-1} A^{\top} b \in \arg \min _{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2}
\end{aligned}
$$

If $A^{\top} A$ is nonsingular matrix \Rightarrow P.D.
Note : x^{*} is an analytical solution.

How to Solve an Unconstrained MP

- Get an initial point and iteratively decrease the obj. function value.
- Stop once the stopping criteria satisfied.
- Steep decent might not be a good choice.
- Newtons method is highly recommended.
- Local and quadratic convergent algorithm.
- Need to choose a good step size to guarantee global convergence.

The First Order Taylor Expansion

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function

$$
f(x+d)=f(x)+\nabla f(x)^{\top} d+\alpha(x, d)\|d\|
$$

where

$$
\lim _{d \rightarrow 0} \alpha(x, d)=0
$$

If $\nabla f(x)^{\top} d<0$ and d is small enough then $f(x+d)<f(x)$.
We call d is a descent direction.

Steep Descent with Exact Line Search

Start with any $x^{0} \in \mathbb{R}^{n}$. Having x^{i}, stop if $\nabla f\left(x^{i}\right)=0$.
Else compute x^{i+1} as follows:
(1) Steep descent direction: $d^{i}=-\nabla f\left(x^{i}\right)$
(2) Exact line search: Choose a stepsize such that

$$
\frac{d f\left(x^{i}+\lambda d^{i}\right)}{d \lambda}=f^{\prime}\left(x^{i}+\lambda d^{i}\right)=0
$$

(3) Updating: $x^{i+1}=x^{i}+\lambda d^{i}$

MATLAB Code for Steep Descent with Exact Line Search (Quadratic Function Only)

function $\left[x, f_{_}\right.$value, iter] $=\operatorname{grdlines}(Q, p, x 0$, esp $)$
\%
$\% \min 0.5 * x^{\top} Q x+p^{\top} x$
\% Solving unconstrained minimization via
\% steep descent with exact line search
\%
flag $=1$;
iter $=0$;
while flag > esp

$$
\begin{aligned}
& \operatorname{grad}=\mathrm{Q} \mathrm{x}_{0}+\mathrm{p} ; \\
& \text { temp } 1=\mathrm{grad}^{\prime} * \mathrm{grad} ; \\
& \text { if temp } 1<10^{-12} \\
& \quad \text { flag }=\mathrm{esp} ;
\end{aligned}
$$

else
stepsize $=$ temp1 $/\left(\right.$ grad $^{\prime}{ }^{*} \mathrm{Q}^{*}$ grad $)$;
$\mathrm{x}_{1}=\mathrm{x}_{0}$ - stepsize*grad;
flag $=\operatorname{norm}\left(x_{1}-x_{0}\right)$;
$x_{0}=x_{1} ;$
end;
iter $=$ iter +1 ;
end;
$x=x_{0}$;
$f_{\text {value }}=0.5^{*} x^{\prime *} Q^{*} x+p^{\prime *} x$;

The Key Idea of Newton's Method

Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a twice differentiable function

$$
f(x+d)=f(x)+\nabla f(x)^{\top} d+\frac{1}{2} d^{\top} \nabla^{2} f(x) d+\beta(x, d)\|d\|
$$

where $\lim _{d \rightarrow 0} \beta(x, d)=0$
At $i^{\text {th }}$ iteration, use a quadratic function to approximate

$$
f(x) \approx f\left(x^{i}\right)+\nabla f\left(x^{i}\right)\left(x-x^{i}\right)+\frac{1}{2}\left(x-x^{i}\right)^{\top} \nabla^{2} f\left(x^{i}\right)\left(x-x^{i}\right)
$$

$x^{i+1}=\arg \min \tilde{f}(x)$

Newton's Method

Start with $x^{0} \in \mathbb{R}^{n}$. Having x^{i},stop if $\nabla f\left(x^{i}\right)=0$ Else compute x^{i+1} as follows:
(1) Newton direction: $\quad \nabla^{2} f\left(x^{i}\right) d^{i}=-\nabla f\left(x^{i}\right)$

Have to solve a system of linear equations here!
(2) Updating: $x^{i+1}=x^{i}+d^{i}$

- Converge only when x^{0} is close to x^{*} enough.

$f(x)=\frac{1}{6} x^{6}+\frac{1}{4} x^{4}+2 x^{2}$
$g(x)=f\left(x^{i}\right)+f^{\prime}\left(x^{i}\right)\left(x-x^{i}\right)+\frac{1}{2} f^{\prime \prime}\left(x^{i}\right)\left(x-x^{i}\right)^{2}$
It can not converge to the optimal solution.

Constrained Optimization Problem

Problem setting: Given function $f, g_{i}, i=1, \ldots, k$ and h_{j}, $j=1, \ldots, m$, defined on a domain $\Omega \subseteq \mathbb{R}^{n}$,

$$
\begin{array}{cc}
\min _{x \in \Omega} & f(x) \\
\text { s.t. } & g_{i}(x) \leq 0, \quad \forall i \\
& h_{j}(x)=0, \quad \forall j
\end{array}
$$

where $f(x)$ is called the objective function and $g(x) \leq 0, h(x)=0$ are called constrains.

Example

$$
\begin{array}{cc}
\min & f(x)=2 x_{1}^{2}+x_{2}^{2}+3 x_{3}^{2} \\
\text { s.t. } & 2 x_{1}-3 x_{2}+4 x_{3}=49
\end{array}
$$

<sol>

$$
\begin{gathered}
L(x, \beta)=f(x)+\beta\left(2 x_{1}-3 x_{2}+4 x_{3}-49\right), \beta \in \mathbb{R} \\
\frac{\partial}{\partial x_{1}} L(x, \beta)=0 \Rightarrow 4 x_{1}+2 \beta=0 \\
\frac{\partial}{\partial x_{2}} L(x, \beta)=0 \Rightarrow 2 x_{2}-3 \beta=0 \\
\frac{\partial}{\partial x_{3}} L(x, \beta)=0 \Rightarrow 6 x_{3}+4 \beta=0 \\
2 x_{1}-3 x_{2}+4 x_{3}-49=0 \Rightarrow \beta=-6 \\
\Rightarrow x_{1}=3, x_{2}=-9, x_{3}=4
\end{gathered}
$$

Definitions and Notation

- Feasible region:

$$
\begin{gathered}
\mathcal{F}=\{x \in \Omega \mid g(x) \leq 0, h(x)=0\} \\
\text { where } g(x)=\left[\begin{array}{c}
g_{1}(x) \\
\vdots \\
g_{k}(x)
\end{array}\right] \text { and } h(x)=\left[\begin{array}{c}
h_{1}(x) \\
\vdots \\
h_{m}(x)
\end{array}\right]
\end{gathered}
$$

- A solution of the optimization problem is a point $x^{*} \in \mathcal{F}$ such that $\nexists x \in \mathcal{F}$ for which $f(x)<f\left(x^{*}\right)$ and x^{*} is called a global minimum.

Definitions and Notation

- A point $\bar{x} \in \mathcal{F}$ is called a local minimum of the optimization problem if $\exists \varepsilon>0$ such that

$$
f(x) \geq f(\bar{x}), \quad \forall x \in \mathcal{F} \text { and }\|x-\bar{x}\|<\varepsilon
$$

- At the solution x^{*}, an inequality constraint $g_{i}(x)$ is said to be active if $g_{i}\left(x^{*}\right)=0$, otherwise it is called an inactive constraint.
- $g_{i}(x) \leq 0 \Leftrightarrow g_{i}(x)+\xi_{i}=0, \xi_{i} \geq 0$ where ξ_{i} is called the slack variable

Definitions and Notation

- Remove an inactive constraint in an optimization problem will NOT affect the optimal solution
- Very useful feature in SVM
- If $\mathcal{F}=\mathbb{R}^{n}$ then the problem is called unconstrained minimization problem
- Least square problem is in this category
- SSVM formulation is in this category
- Difficult to find the global minimum without convexity assumption

The Most Important Concepts in Optimization(minimization)

- A point is said to be an optimal solution of a unconstrained minimization if there exists no decent direction
$\Longrightarrow \nabla f\left(x^{*}\right)=0$
- A point is said to be an optimal solution of a constrained minimization if there exists no feasible decent direction \Longrightarrow KKT conditions
- There might exist decent direction but move along this direction will leave out the feasible region

Minimum Principle

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex and differentiable function $\mathcal{F} \subseteq \mathbb{R}^{n}$ be the feasible region.

$$
x^{*} \in \arg \min _{x \in \mathcal{F}} f(x) \Longleftrightarrow \nabla f\left(x^{*}\right)\left(x-x^{*}\right) \geq 0 \quad \forall x \in \mathcal{F}
$$

Example:

$$
\min (x-1)^{2} \quad \text { s.t. } \quad a \leq x \leq b
$$

Linear Programming Problem

- An optimization problem in which the objective function and all constraints are linear functions is called a linear programming problem

$$
\begin{array}{cl}
(\mathrm{LP}) & \min \\
& p^{\top} x \\
\text { s.t. } & A x \leq b \\
& C x=d \\
& L \leq x \leq U
\end{array}
$$

Linear Programming Solver in MATLAB

$\mathrm{X}=\mathrm{LINPROG}(\mathrm{f}, \mathrm{A}, \mathrm{b})$ attempts to solve the linear programming problem:

$$
\min _{x} f^{\prime *} x \text { subject to: } A^{*} x<=b
$$

$\mathrm{X}=\mathrm{LINPROG}(\mathrm{f}, \mathrm{A}, \mathrm{b}$, Aeq,beq) solves the problem above while additionally satisfying the equality constraints Aeq*x $=$ beq.
$X=$ LINPROG(f,A,b,Aeq,beq,LB,UB) defines a set of lower and upper bounds on the design variables, X, so that the solution is in the range $\mathrm{LB}<=\mathrm{X}<=\mathrm{UB}$.
Use empty matrices for LB and UB if no bounds exist. Set $L B(i)=-\ln f$ if $X(i)$ is unbounded below; set $U B(i)=\operatorname{Inf}$ if $X(i)$ is unbounded above.

Linear Programming Solver in MATLAB

$\mathrm{X}=\mathrm{LINPROG}(\mathrm{f}, \mathrm{A}, \mathrm{b}$, Aeq, beq, LB, UB, X0) sets the starting point to X 0 . This option is only available with the active-set algorithm. The default interior point algorithm will ignore any non-empty starting point.

You can type "help linprog" in MATLAB to get more information!

L_{1}-Approximation: $\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{1}$

$$
\|z\|_{1}=\sum_{i=1}^{m}\left|z_{i}\right|
$$

$\min \mathbf{1}^{\top} s$
x, s
$\operatorname{Or} \quad \min _{x, s} \sum_{i=1}^{m} s_{i}$
s.t. $-s \leq A x-b \leq s$
s.t. $-s_{i} \leq A_{i} x-b_{i} \leq s_{i} \forall i$

$$
\begin{aligned}
& \min _{x, s}\left[\begin{array}{llllll}
0 & \cdots & 0 & 1 & \cdots & 1
\end{array}\right]\left[\begin{array}{l}
x \\
s
\end{array}\right] \\
& \text { s.t. }\left[\begin{array}{cc}
A & -I \\
-A & -l
\end{array}\right]_{2 m \times(n+m)}\left[\begin{array}{c}
x \\
s
\end{array}\right] \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]
\end{aligned}
$$

Chebyshev Approximation: $\min _{x \in \mathbb{R}^{n}}\|A x-b\|_{\infty}$

$$
\|z\|_{\infty}=\max _{1 \leq i \leq m}\left|z_{i}\right|
$$

$$
\begin{aligned}
& \min _{x, \gamma} \gamma \\
& \text { s.t. }-\mathbf{1} \gamma \leq A x-b \leq \mathbf{1} \gamma \\
& \min _{x, s}\left[\begin{array}{llll}
0 & \cdots & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
\gamma
\end{array}\right] \\
& \text { s.t. }\left[\begin{array}{cc}
A & -\mathbf{1} \\
-A & -\mathbf{1}
\end{array}\right]_{2 m \times(n+1)}\left[\begin{array}{l}
x \\
\gamma
\end{array}\right] \leq\left[\begin{array}{c}
b \\
-b
\end{array}\right]
\end{aligned}
$$

