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You Have Learned (Unconstrained)
Optimization in Your High School

Let f (x) = ax2 + bx + c, a 6= 0, x∗ = − b
2a

Case 1 : f ′′(x∗) = 2a > 0⇒ x∗ ∈ arg min
x∈R

f (x)

Case 2 : f ′′(x∗) = 2a < 0⇒ x∗ ∈ arg max
x∈R

f (x)

For minimization problem (Case I),

f ′(x∗) = 0 is called the first order optimality condition.

f ′′(x∗) > 0 is the second order optimality condition.
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Optimization Examples in Machine Learning

1 Maximum likelihood estimation

2 Maximum a posteriori estimation

3 Least squares estimates

4 Gradient descent method

5 Backpropagation
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Gradient and Hessian

Let f : Rn → R be a differentiable function. The gradient of
function f at a point x ∈ Rn is defined as

∇f (x) = [
∂f (x)

∂x1
,
∂f (x)

∂x2
, . . . ,

∂f (x)

∂xn
] ∈ Rn

If f : Rn → R is a twice differentiable function. The Hessian
matrix of f at a point x ∈ Rn is defined as

∇2f (x) =


∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n

 ∈ Rn×n
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Example of Gradient and Hessian

f (x) = x2
1 + x2

2 − 2x1 + 4x2

=
1

2

[
x1 x2

] [2 0
0 2

] [
x1

x2

]
+
[
−2 4

] [x1

x2

]

∇f (x) =
[
2x1 − 2 2x2 + 4

]
,∇2f (x) =

[
2 0
0 2

]
By letting ∇f (x) = 0, we have x∗ =

[
1
−2

]
∈ arg min

x∈R2
f (x)
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Quadratic Functions (Standard Form)
f (x) = 1

2x
>Hx + p>x

Let f : Rn → R and f (x) = 1
2x
>Hx + p>x

where H ∈ Rn×n is a symmetric matrix and p ∈ Rn

then
∇f (x) = Hx + p

∇2f (x) = H (Hessian)

Note: If H is positive definite, then x∗ = −H−1p is the unique
solution of min f (x).
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Least-squares Problem
min
x∈Rn
‖Ax − b‖2

2, A ∈ Rm×n, b ∈ Rm

f (x) = (Ax − b)>(Ax − b)

= x>A>Ax − 2b>Ax + b>b

∇f (x) = 2A>Ax − 2A>b

∇2f (x) = 2A>A

x∗ = (A>A)−1A>b ∈ arg min
x∈Rn
‖Ax − b‖2

2

If A>A is nonsingular matrix ⇒ P.D.
Note : x∗ is an analytical solution.
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How to Solve an Unconstrained MP

Get an initial point and iteratively decrease the obj. function
value.

Stop once the stopping criteria satisfied.

Steep decent might not be a good choice.

Newtons method is highly recommended.

Local and quadratic convergent algorithm.
Need to choose a good step size to guarantee global
convergence.
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The First Order Taylor Expansion

Let f : Rn → R be a differentiable function

f (x + d) = f (x) +∇f (x)>d + α(x , d)‖d‖,

where
lim
d→0

α(x , d) = 0

If ∇f (x)>d < 0 and d is small enough then f (x + d) < f (x).

We call d is a descent direction.
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Steep Descent with Exact Line Search

Start with any x0 ∈ Rn. Having x i , stop if ∇f (x i ) = 0.
Else compute x i+1 as follows:

1 Steep descent direction: d i = −∇f (x i )

2 Exact line search: Choose a stepsize such that

df (x i + λd i )

dλ
= f ′(x i + λd i ) = 0

3 Updating: x i+1 = x i + λd i
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MATLAB Code for Steep Descent with Exact Line Search
(Quadratic Function Only)

function [x , f value, iter ] = grdlines(Q, p, x0, esp)
%
% min 0.5 ∗ x>Qx + p>x
% Solving unconstrained minimization via
% steep descent with exact line search
%
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flag = 1;
iter = 0;
while flag > esp

grad = Qx0+p;
temp1 = grad’*grad;
if temp1 < 10−12

flag = esp;
else

stepsize = temp1/(grad’*Q*grad);
x1 = x0 - stepsize*grad;
flag = norm(x1-x0);
x0 = x1;

end;
iter = iter + 1;

end;
x = x0;
fvalue = 0.5*x’*Q*x+p’*x;
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The Key Idea of Newton’s Method

Let f : Rn −→ R be a twice differentiable function

f (x + d) = f (x) +∇f (x)>d +
1

2
d>∇2f (x)d + β(x , d) ‖ d ‖

where lim
d→0

β(x , d) = 0

At i th iteration, use a quadratic function to approximate

f (x) ≈ f (x i ) +∇f (x i )(x − x i ) +
1

2
(x − x i )>∇2f (x i )(x − x i )

x i+1 = arg min f̃ (x)
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Newton’s Method

Start with x0 ∈ Rn. Having x i ,stop if ∇f (x i ) = 0
Else compute x i+1 as follows:

1 Newton direction: ∇2f (x i )d i = −∇f (x i )
Have to solve a system of linear equations here!

2 Updating: x i+1 = x i + d i

Converge only when x0 is close to x∗ enough.
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It can not converge to the optimal solution.

f(x) = à 6
1x 6 + 4

1x 4 + 2x 2

g(x) = f(xi) + f0(xi)(x à xi) + 2
1 f00(xi)(x à xi)

f (x) = 1
6x

6 + 1
4x

4 + 2x2

g(x) = f (x i ) + f ′(x i )(x − x i ) + 1
2 f
′′(x i )(x − x i )2

It can not converge to the optimal solution.
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Constrained Optimization Problem

Problem setting: Given function f , gi , i = 1, ..., k and hj ,
j = 1, ...,m, defined on a domain Ω ⊆ Rn,

min
x∈Ω

f (x)

s.t. gi (x) ≤ 0, ∀i
hj(x) = 0, ∀j

where f (x) is called the objective function and g(x) ≤ 0, h(x) = 0
are called constrains.
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Example

min f (x) = 2x2
1 + x2

2 + 3x2
3

s.t. 2x1 − 3x2 + 4x3 = 49

<sol>
L(x , β) = f (x) + β(2x1 − 3x2 + 4x3 − 49), β ∈ R

∂

∂x1
L(x , β) = 0 ⇒ 4x1 + 2β = 0

∂

∂x2
L(x , β) = 0 ⇒ 2x2 − 3β = 0

∂

∂x3
L(x , β) = 0 ⇒ 6x3 + 4β = 0

2x1 − 3x2 + 4x3 − 49 = 0⇒ β = −6
⇒ x1 = 3, x2 = −9, x3 = 4
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x1 + x2 ≤ 4

−x1 − x2 ≤ −2
x1, x2 ≥ 0

∇f (x) = [2x1, 2x2]

min
x∈R2

x21 + x22

∇f (x∗) = [2, 2]
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Definitions and Notation

Feasible region:

F = {x ∈ Ω | g(x) ≤ 0, h(x) = 0}

where g(x) =

 g1(x)
...

gk(x)

 and h(x) =

 h1(x)
...

hm(x)


A solution of the optimization problem is a point x∗ ∈ F such
that @x ∈ F for which f (x) < f (x∗) and x∗ is called a global
minimum.
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Definitions and Notation

A point x̄ ∈ F is called a local minimum of the optimization
problem if ∃ε > 0 such that

f (x) ≥ f (x̄), ∀x ∈ F and ‖x − x̄‖ < ε

At the solution x∗, an inequality constraint gi (x) is said to be
active if gi (x

∗) = 0, otherwise it is called an inactive
constraint.

gi (x) ≤ 0 ⇔ gi (x) + ξi = 0, ξi ≥ 0 where ξi is called the slack
variable
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Definitions and Notation

Remove an inactive constraint in an optimization problem will
NOT affect the optimal solution

Very useful feature in SVM

If F = Rn then the problem is called unconstrained
minimization problem

Least square problem is in this category
SSVM formulation is in this category
Difficult to find the global minimum without convexity
assumption
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The Most Important Concepts in
Optimization(minimization)

A point is said to be an optimal solution of a unconstrained
minimization if there exists no decent direction
=⇒ ∇f (x∗) = 0

A point is said to be an optimal solution of a constrained
minimization if there exists no feasible decent direction
=⇒ KKT conditions

There might exist decent direction but move along this
direction will leave out the feasible region
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Minimum Principle

Let f : Rn → R be a convex and differentiable function F ⊆ Rn be
the feasible region.

x∗ ∈ arg min
x∈F

f (x)⇐⇒ ∇f (x∗)(x − x∗) ≥ 0 ∀x ∈ F

Example:

min(x − 1)2 s.t. a ≤ x ≤ b
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x1 + x2 ≤ 4

−x1 − x2 ≤ −2
x1, x2 ≥ 0

∇f (x) = [2x1, 2x2]

min
x∈R2

x21 + x22

∇f (x∗) = [2, 2]
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Linear Programming Problem

An optimization problem in which the objective function and
all constraints are linear functions is called a linear
programming problem

(LP) min p>x

s.t. Ax ≤ b

Cx = d

L ≤ x ≤ U
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Linear Programming Solver in MATLAB

X=LINPROG(f,A,b) attempts to solve the linear programming
problem:

min
x

f’*x subject to: A*x <= b

X=LINPROG(f,A,b,Aeq,beq) solves the problem above while
additionally satisfying the equality constraints Aeq*x = beq.

X=LINPROG(f,A,b,Aeq,beq,LB,UB) defines a set of lower and
upper bounds on the design variables, X, so that the solution
is in the range LB <= X <= UB.
Use empty matrices for LB and UB if no bounds exist. Set
LB(i) = -Inf if X(i) is unbounded below; set UB(i) = Inf if X(i)
is unbounded above.
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Linear Programming Solver in MATLAB

X=LINPROG(f,A,b,Aeq,beq,LB,UB,X0) sets the starting point
to X0. This option is only available with the active-set al-
gorithm. The default interior point algorithm will ignore any
non-empty starting point.

You can type “help linprog” in MATLAB to get more information!
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L1-Approximation: min
x∈Rn
‖Ax − b‖1

‖z‖1 =
m∑
i=1
|zi |

min
x ,s

1>s

s.t. −s ≤ Ax − b ≤ s
Or

min
x ,s

m∑
i=1

si

s.t. −si ≤ Aix − bi ≤ si ∀i

min
x ,s

[
0 · · · 0 1 · · · 1

] [x
s

]
s.t.

[
A −I
−A −I

]
2m×(n+m)

[
x
s

]
≤
[
b
−b

]
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Chebyshev Approximation: min
x∈Rn
‖Ax − b‖∞

‖z‖∞ = max
1≤i≤m

|zi |

min
x ,γ

γ

s.t. − 1γ ≤ Ax − b ≤ 1γ

min
x ,s

[
0 · · · 0 1

] [x
γ

]
s.t.

[
A −1
−A −1

]
2m×(n+1)

[
x
γ

]
≤
[
b
−b

]
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