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You Have Learned (Unconstrained)
Optimization in Your High School

* b
Let f(x) =ax?>+ bx+c, a#0, x* = —2

Case1: f’(x*)=2a>0=x*¢ arg)r(neiﬁ f(x)
Case 2: f"(x*) =2a< 0= x*€arg max f(x)
For minimization problem (Case I),
e f/(x*) =0 is called the first order optimality condition.

e f”(x*) > 0 is the second order optimality condition.



Optimization Examples in Machine Learning

@ Maximum likelihood estimation
@ Maximum a posteriori estimation
© Least squares estimates

@ Gradient descent method

© Backpropagation



Gradient and Hessian

@ Let f : R"” — R be a differentiable function. The gradient of
function f at a point x € R” is defined as
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VE(x) = [ ] R

o If f:R" — R is a twice differentiable function. The Hessian
matrix of f at a point x € R” is defined as
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Example of Gradient and Hessian

f(x) = x24+x3—2x1+4x
1 2 0| |x X1
= abwlg ol [5f r 2 A ]

Vi(x)=[2x1—2 2xp +4] V2f(x) = [g (2)]

By letting Vf(x) = 0, we have x* = [ ! ] € arg min f(x)
—2 x€ER?



Quadratic Functions (Standard Form)

f(x) = ix"Hx + p'x

Let f:R" — R and f(x) = 2x Hx + p'x
where H € R™" is a symmetric matrix and p € R"

then
Vf(x)=Hx+p
V2f(x) = H (Hessian)
Note: If H is positive definite, then x* = —H1p is the unique

solution of min f(x).



Least-squares Problem

min ||[Ax — b||3, A€ R™", b e R™

x€R"

f(x) = (Ax—b)"(Ax —b)
= x"ATAx—2b"Ax+b"b
Vf(x) = 2ATAx—2ATh
V3f(x) = 2ATA
(ATA)TATh e arg min |Ax — b]|3

x
*
|

If ATA is nonsingular matrix = P.D.
Note : x* is an analytical solution.



How to Solve an Unconstrained MP

@ Get an initial point and iteratively decrease the obj. function
value.

@ Stop once the stopping criteria satisfied.
@ Steep decent might not be a good choice.

@ Newtons method is highly recommended.

e Local and quadratic convergent algorithm.
o Need to choose a good step size to guarantee global
convergence.



The First Order Taylor Expansion

Let f : R"™ — R be a differentiable function
f(x +d) = f(x)+ VF(x)"d + ax, d)||d|],

where
lim a(x,d) =0
d—0

If VF(x)"d < 0 and d is small enough then f(x + d) < f(x).

We call d is a descent direction.



Steep Descent with Exact Line Search

Start with any x? € R”. Having x', stop if Vf(x') = 0.
Else compute x'*1 as follows:
© Steep descent direction: d' = —Vf(x")
@ Exact line search: Choose a stepsize such that
df (x" + \d' : :
(Xd‘i)‘\ ) :f,(XI-{—)\d’):O

@ Updating: x'*1 = x + \d’
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MATLAB Code for Steep Descent with Exact Line Search
(Quadratic Function Only)

function [x, f _value, iter] = grdlines(Q, p, x0, esp)
%

% min 0.5%x' Qx + p'x

% Solving unconstrained minimization via

% steep descent with exact line search

%
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flag = 1;

iter = 0;

while flag > esp
grad = Qxo+p;

templ = grad'*grad;
if templ < 10712
flag = esp;
else
stepsize = templ/(grad'*Q*grad);
X1 = Xg - stepsize*grad,;
flag = norm(x1-xp);

Xo = X1,
end;
iter = iter + 1;
end;
X = Xg;

fvalue = 0-5*X,*Q*X+p,*X;
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The Key ldea of Newton's Method

Let f : R" — R be a twice differentiable function
1
f(x +d) = f(x)+ VF(x) d + 5dTv2f(x)d + B(x,d) || d |
h li d) =
where dli)noﬁ(x, )=20
At ith iteration, use a quadratic function to approximate
. , , 1 ) ) )
f(x) = f(x')+ VFi(x")(x—x")+ E(X — x’)Tvzf(x’)(x —x")

x*1 = arg min f(x)
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Newton's Method

Start with x° € R". Having x' ,stop if Vf(x') =0
Else compute x*1 as follows:
@ Newton direction:  V2f(x')d' = ~Vf(x')
Have to solve a system of linear equations here!
@ Updating: x'*1 = x/ + d'

o Converge only when x? is close to x* enough.
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f(x) = %x6 + %x“ + 2x?
g(x) = F(x) + /() (x = x7) + 3 () (x = )2
It can not converge to the optimal solution.
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Constrained Optimization Problem

Problem setting: Given function f, g;, i = 1,...,k and h;,
j=1,...,m, defined on a domain Q C R",

)
stt. gi(x) <0, Vi
hj(x) =0, Vj

where f(x) is called the objective function and g(x) <0, h(x) =0
are called constrains.
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Example

min  f(x) = 2x? + x5 + 3x2
s.t.  2x1 — 3x0 4+ 4x3 = 49
<sol>
L(x,B) =f(x)+ B(2x1 —3x2 +4x3 —49), e R
0

ai)qL(X,IB):O = 4X1+2ﬂ:0
0
Bl =0 = 20-35=0
0
Gl =0 = 65+45=0

2x1 —3xp+4x3—49=0= (3 =—-6

=>x1=3,x%=-9 x3=4
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TER

. ¢ 9
iy :1;% + 25

-1 — 29 < =2
x1, x9 > 0

V f(x) = [221, 229
Vi*) =[2,2]
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Definitions and Notation

o Feasible region:
F={xeQg(x) <0,h(x) =0}

g1(x) hy(x)
where g(x) = 5 and h(x) = :
8k(x) hm(x)
@ A solution of the optimization problem is a point x* € F such
that fix € F for which f(x) < f(x*) and x* is called a global
minimum.
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Definitions and Notation

@ A point X € F is called a local minimum of the optimization
problem if 3¢ > 0 such that

f(x) > f(X), VYxeF and |[x—x||<e

@ At the solution x*, an inequality constraint g;(x) is said to be
active if gi(x*) = 0, otherwise it is called an inactive
constraint.

0 gi(x) <0< gi(x)+& =0, & >0 where & is called the slack
variable
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Definitions and Notation

@ Remove an inactive constraint in an optimization problem will
NOT affect the optimal solution

o Very useful feature in SVM
o If 7 = R" then the problem is called unconstrained

minimization problem

o Least square problem is in this category

e SSVM formulation is in this category

e Difficult to find the global minimum without convexity
assumption
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The Most Important Concepts in
Optimization(minimization)

@ A point is said to be an optimal solution of a unconstrained
minimization if there exists no decent direction
= Vf(x*)=0

@ A point is said to be an optimal solution of a constrained

minimization if there exists no feasible decent direction
—> KKT conditions

e There might exist decent direction but move along this
direction will leave out the feasible region
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Minimum Principle

Let f : R" — R be a convex and differentiable function 7 C R" be
the feasible region.

x* € arg mi]rg f(x) <= VIf(x")(x—x")>0 VxeF
PSS

Example:
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TER

. ¢ 9
iy :1;% + 25

-1 — 29 < =2
x1, x9 > 0

V f(x) = [221, 229
Vi*) =[2,2]
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Linear Programming Problem

@ An optimization problem in which the objective function and
all constraints are linear functions is called a linear
programming problem

(LP) min  p'x
s.t. Ax < b
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Linear Programming Solver in MATLAB

X=LINPROG(f,A,b) attempts to solve the linear programming
problem:
min f'*x subject to: A*x <=b

X=LINPROG(f,A,b,Aeq,beq) solves the problem above while
additionally satisfying the equality constraints Aeq*x = beq.

X=LINPROG(f,A,b,Aeq,beq,LB,UB) defines a set of lower and
upper bounds on the design variables, X, so that the solution
is in the range LB <= X <= UB.

Use empty matrices for LB and UB if no bounds exist. Set
LB(i) = -Inf if X(i) is unbounded below; set UB(i) = Inf if X(i)
is unbounded above.
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Linear Programming Solver in MATLAB

X=LINPROG(f,A,b,Aeq,beq,LB,UB,X0) sets the starting point
to X0. This option is only available with the active-set al-
gorithm. The default interior point algorithm will ignore any
non-empty starting point.

You can type “help linprog” in MATLAB to get more information!
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L;-Approximation: mIiRp |Ax — b||1
xeR"

m
zlla = >_ |z
i=1
minl's min i s;
X,S :
k] Or X,S i=1
st. —s<Ax—b<s st. —s5; < Aix—b; <s; Vi
min [0 0 1 1] [X]
X,S S

[ T = 1)
—A — 2mx(n+m) s] — [-b
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Chebyshev Approximation: m}iRn | Ax — bl
x€R"

[zllo = 1g.«'ﬂgxmlzl-l

min vy
X?’y
st. —1ly<Ax—-b<1y

IN
|
O_D‘
=

S SR NN B
A -1 2mx(n+1) v
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