
Clock Skew Based Client Device Identification

in Cloud Environments

Ding-Jie Huang ∗, Kai-Ting Yang ∗, Chien-Chun Ni †, Wei-Chung Teng ∗, Tien-Ruey Hsiang ∗, and Yuh-Jye Lee ∗

∗ Department of Computer Science and Information Engineering

National Taiwan University of Science and Technology, Taipei City, Taiwan 106

Email: {D9515002, D9615007, weichung, trhsiang, yuh-jye}@mail.ntust.edu.tw
† Department of Computer Science

Stony Brook University, Stony Brook, NY 11794, USA

Email: chni@cs.stonybrook.edu

Abstract—Along with the growth of cloud computing and
mobile devices, the importance of client device identity concern
over cloud environment is emerging. To provide a lightweight
yet reliable method for device identification, an application layer
approach based on clock skew fingerprint is proposed. The
developed experimental platform adapts AJAX technology to
collect the timestamps of client devices in the cloud server during
connection time, then calculate the clock skews of client devices.
Few methods based on linear regression and piecewise minimum
algorithm are developed to optimize the precision and shorten
timestamp collection process. A jump point detection scheme
is also proposed to resolve the offset drifting problem, which is
usually caused by switching network or temporary disconnection.
Finally, two experiments are conducted to study the effectiveness
of clock skew fingerprint, and the results illustrate that the
false positive rate and the false negative rate, in the worst case,
are both no more than 8% when the tolerance threshold is set
appropriately.

Index Terms—clock skew, device identity, cloud service, jump
point detection

I. INTRODUCTION

The growth of cloud-based services in recent years has

significantly changed the way how people use computers and

mobile devices, and also the way security attacks may be

launched. The architecture of cloud differs from classic com-

puter network in many ways. Network connections become

part of infrastructure on basic operations like data accessing,

and the server threats are further isolated under virtualization

technologies. Therefore, classic security issues such as user

privacy, data confidentiality and regulation concerns should

be reconsidered under the cloud computing environments.

This paper studies the client device identification problem

of cloud security. Nowadays, people often subscribe cloud

services through personal devices such as mobile phones,

tablets, and laptop computers. Therefore, user identity can be

associated to dedicated hardware. Device identification in the

cloud is useful in detecting unauthorized account access and

locating stolen devices.

Device identification is realized by maintaining a registered

list of physical devices which are associated with valid users.

Once a user logs into the service via an unregistered de-

vice, service provider may ask the user to pass additional

verification, or raise an alarm to the system supervisor for

possible invalid user login. Many candidates can be used as

the fingerprint of physical devices, such as IP address, MAC

address, cookie, or web browser’s configurations [1]. However,

these attributes suffer the weaknesses of easy to forge, lack of

uniqueness, and varying with environments, which make them

insufficient to serve as device fingerprinting. In this paper,

we propose clock skew, a distinctive fingerprint, to identify

different devices.

Clock skew is the difference of clocking speed between

two clocks. Generally, modern processor’s clocks present two

properties [2]–[4]: first, the clock skew between two devices

is relatively stable over time; second, there is distinguishable

clock skew between any two physical devices. According

to these two properties, clock skew can be regarded as a

fingerprint of any device with digital clock. Clock skew has

been widely used as an attack method to reveal a web host

behind HoneyPot or Tor networks [4]–[6]. Later, it is also

used to verify the identity of sensor motes [7,8]. This work

applies clock skew to identify client devices for server security

in cloud environments, or even in classic web systems.

In this paper, we treat clock skew from a novel aspect

and regard it as a detection mechanism of adversary. Also,

to display the usability of clock skew, a web page based

skew detection system is constructed to collect the timestamps,

and five different methods are implemented on it to calculate

the clock skews of client devices. We provide an AJAX-

based technique to periodically collect time information from

cloud service subscribers to the server. Device fingerprinting

is then performed by estimating the clock skew via this time

information. Through experiments performed on a testing plat-

form containing over 100 devices, the clock skew effectively

identifies client devices regardless of underlying networking

channels such as 3G, Wi-Fi, or ADSL, etc.

Furthermore, during our experiments, we observed that

sometimes packet offsets drift dramatically and thus cause a

jump point. This problem is mainly caused by global time

synchronization or network connection hand-off. In previous

work, since the packet collection period is long, this phe-

nomenon is ignored and have not been solved. To minimized

the packet collection period and speed up the clock skew

computation, a jump point detection scheme is provided.

2012 26th IEEE International Conference on Advanced Information Networking and Applications

1550-445X/12 $26.00 © 2012 IEEE

DOI 10.1109/AINA.2012.51

526

In this work, we introduce clock skew as a effective client

device identity in cloud services, and provide a solution to

the jump point problem which to our knowledge has not been

discussed before.

II. RELATED WORK

At first, we review several modern host identification

schemes. Then, clock skew based techniques developed for

wireless sensor networks and the Internet are discussed.

A. Host Identification Techniques

In previous studies [9], once an adversary successfully forge

its identity to infect the cloud server, the adversary might

prompt serious damage either to the service provider or to

the client. Thus, an effective scheme to identifying different

clients is essential for any SaaS based service.

On the other hand, Remote host identification or finger-

printing has been studied broadly. Possible applications vary

from Bluetooth signal [10] to RFID tags. Gerdes et al. [11]

proposed a method to uniquely identify Ethernet devices by

analyzing their analog signals. Later, Rasmussen et al. [12]

extended the radio fingerprinting technology to wireless sensor

networks, and demonstrated its feasibility through experi-

ments. Eckersley [1] presented a web browser-based device

fingerprinting approach which uses browser’s configurations

and plug-in information to characterize the device. Eckersley’s

also showed that web browser’s information can be easily

traced.

B. Clock Skew based Attack and Defense Schemes

Clock skew has been widely used in various attacks to detect

and to reveal hidden hosts. In [4], Kohno et al. exploited

clock skew to fingerprint a remote physical device by stealthily

record and analyze its ICMP or TCP timestamps. However,

for real world applications, using ICMP and TCP timestamps

have their limitation. ICMP timestamps are blocked by many

firewalls, and some operating systems in default disable TCP

timestamps. Furthermore, their approach failed in anonymous

networks like Tor in which end-to-end TCP connection is not

possible [6].

Murdoch [5] proposed a clock skew based attack to re-

veal hidden services. The pseudonymous server identity was

revealed due to the shift of clock skew which results from

increased server load and accordingly the CPU temperature.

This attack works in Tor network. However, it highly relies

on large amount of traffic from the hidden server through

Tor network. Also, it requires large amount of timestamps

in a short period of time to perform adequate clock-skew

estimation.

Later Zander and Murdoch developed an enhanced attack

with synchronized sampling technique [6] which significantly

reduces the quantization error and thus cut the heavy network

traffic necessary to previous attack. Also, their work is the

first one that undertakes the clock skew estimation through

HTTP protocol. However, this attack model can not be directly

applied to server side for defense purpose. We discuss more

about the reason later at section III.

All of the above clock skew based techniques are attacking

methods that probe service providers on the Internet. To deploy

clock skew as a defense mechanism, Huang et al. [7] proposed

a method to utilize clock skew on node identification in wire-

less sensor networks. In their paper, clock skew fingerprinting

is proposed as a countermeasure against Sybil attack. Uddin’s

work [8] also verified that the above-mentioned skew-based

scheme an effective fingerprinting approach if under a covert

channel.

III. CLOCK SKEW BASED HOST IDENTIFICATION:

SCENARIO AND PRELIMINARIES

In this section, the scenario and preliminaries of clock

skew based host identification are introduced. In the first part,

a scenario of how clock skew based scheme assists device

identification and malicious adversary detection is presented.

The second part discusses preliminary basic knowledge of

computing clock skews and corresponding terminology. Then,

a brief description of the experimental platform is given. In

the last part, the time collection process is further analyzed.

A. Scenario of Clock Skew Based Client Device Identification

1) Device identification system construction: The scenario

of the client device identification system is showed in Fig. 1.

Consider a user trying to login to a web-based cloud server.

To confirm the validity of this login, the server checks if this

user already has one or more registered devices in the skew

value database.

If not, the server performs secondary authentication on the

client. Some currently popular methods include cell phone

verification, email verification, and interactive method, to

name but a few. If the user cannot pass the verification, login

is denied. Users who passed the identification process may

choose whether to register the current device or not. In the

former case, a timestamp collection server starts to monitor

the time difference between itself and the client device, and

calculates the relative clock skew accordingly. The estimated

clock skew value become the fingerprint of the client device,

and is stored in a database for later login.

On the contrary, if there exist registered device in the

database, the server compares the clock skew of current client

device with the registered one. If the difference of these two

skews is under a tolerance threshold, the server accepts the

device and consider the client has passed the verification. In

contrast, if the difference exceeds the threshold, this account

might be under an account hijacking attack. In this case, the

server then requires the user to provide further information to

verify his/her identity. The following steps are the same with

the no registered client device case. Finally, the server should

raise an alarm to notify the associated client when potential

malicious intention is detected.

2) Timestamp collection system of a cloud service: With

the aid of clock skew fingerprinting technique, a cloud service

gains additional protection against malicious attackers. In

527

Calculate the

clock skew of

the device, then

add it to

registered list

DB

Clients key in

username & password

Check if the client has

a registered device

Yes No

Check if the client can

pass other verification

Collecting time information and

estimating clock skew

| skew difference |

< threshold
NoYes

Reject to

login
Register the client

device or not
NoYes

Login

Yes No

Pass

verification

and login

Login

Fig. 1. Flowchart of clock skew based host identification system.

fact, device fingerprint, as a physical attribute, is superior

to network parameters like IP address, MAC address, and

cookie. Moreover, clock skew’s two major properties, uneasy

to forge and device distinctness, solid our method as a prospect

candidate for cloud-based applications.

As stated earlier, Zander and Murdoch provided a clock

skew estimating method based on HTTP request [6]. However,

their method cannot be directly applied at the server side in the

above scenario. This is because their approach must frequently

asks for the time information of remote host through HTTP

request, which is infeasible for a web server to perform in the

same way. Therefore, a cloud server needs a different approach

to obtain time information from a client.

To force the client to return its own time informations back

to server, AJAX technique is applied in our system because

every packet generated by AJAX contains the corresponding

timestamp. Since AJAX is implemented by Javascript and

Javascript is generally supported by web browsers, we assume

that the execution of Javascript is allowed.

The architecture of the timestamp collection system is

illustrated in Fig. 2. On the client side, a client connects to

web server through Secure Sockets Layer (SSL) to provide

a secured channel. On the server side, the main web server

provides general services to clients. Meanwhile, a timestamp

collection server is settled to gather timestamps from clients.

Firewall

Main Web

Server

Laptop

Database

Timestamp

Collection

Server

Request

index.php

Return

index.php + sync.js

o

o

o

AJAX packets

(timestamp)

ClientServer

Fig. 2. Scenario of timestamp collection.

The calculated clock skew are stored in the database server

for future use. Once a client requests the index page from the

main web server, it returns the page including a script sync.js.

This script then asks the client device to periodically send back

its time information to the timestamp collection server.

In fact, we have built a prototype system to perform

experiments of clock skew identification following the above

scenario. The main web server equips Ubuntu server operat-

ing system, running Apache web server. Because our skew

estimating method is based on Javascript, the accuracy of

timestamps is limited in one millisecond.

B. Terminology of Clock Behavior

The terminology used to represent the clock characteristics

is as follows. The nomenclature from [3,8,13] is adapted is

this paper. Consider Cx(t) as the time reported by the clock

of device x at real time t, C ′

x(t) ≡ dCx(t)/dt and C ′′

x (t) ≡
d2Cx(t)/dt

2, ∀t ≥ 0. Let Cc and Cs be the clocks of client

and the timestamp collection server respectively:

1) Offset: The difference between the time reported by Cc

and by Cs, e.g., the offset of the client clock Cc relative

to the server clock Cs is Cc(t)− Cs(t), ∀t ≥ 0.

2) Frequency: The rate at which the clock progresses, e.g.,

the frequency at time t of Cc is C ′

c(t).
3) Skew (δ): The difference in the frequencies of two

clocks, e.g., the skew of Cc relative to Cs at time t
is δ(t) = C ′

c(t)− C ′

s(t).
4) Drift: The drift of Cc relative to Cs at time t is C ′′

c (t)−
C ′′

s (t).

According to the above definitions, if the server accumulates

sufficient client time information, the clock skew δ of this

client can be computed by the server locally.

C. Usage of Timestamps

With AJAX, timestamps can be collected by server in every

packet returned from client. Unless further specified, all clock

skew estimation is based on server clock Cs. Assume that

the timestamp collection server has received n AJAX packets

528

Outlier

Fig. 3. Distribution of offset collected from the timestamp collection server.

from a client. Let timestamp tci represents the Cc time when ith

packet sent out by the client; similarly, timestamp tsi denotes

the Cs time when the ith packet is received by the server. The

estimated offset between server and client for the ith packet

is denoted as oi, where oi = tsi − tci . Also, the period between

the ith packet and the jth packet according to the server’s

clock Cs is denoted as xij , where xij = tsj − tsi .

To illustrate the relation between server time and packet

offset more clearly, (tsi , oi) is plotted into a scatter diagram;

furthermore, the clock skew δ between server and client can be

estimated as the slope of this diagram. An example is shown

in Fig. 3 , where trend of these dataset is decreasing with

a negative slope, which means that the clock skew between

client and server is negative.

IV. CLOCK SKEW ESTIMATION

As shown in previous section, skew can be estimated as

the slope of the scatter diagram. However, due to occasionally

network delay or jitter, there are some outlier nodes that can

not be used to compute the clock skew. In this section, two

basic techniques are illustrated to estimate the clock skew

between the timestamp collection server and the client: lin-

ear regression and piecewise minimum algorithm. Moreover,

for clock skew based host identification, we implement five

methods to estimate the clock skew between the server and

the client, and analyze the performance of each estimation.

A. Linear Regression Algorithm

Linear regression is a method for a set of data points

to approach one line. Although this method is not robust

while significant outliers exist in the data set [3], it is easy

to implement, and with less computation overhead. Here,

four different types of mechanism based on linear regression

are proposed to approach the clock skew. In the following

paragraph, LR(Nij) denotes the linear regression calculation

for data set Nij , which contains the data from (tsi , oi) to

(tsj , oj).

1) Accumulated Skew: For accumulated skew, while pack-

ets sent from the client are received by the server, the server

computes the estimated skew immediately. The estimated skew

can be represented as LR(N1i), while receiving ith request

from the client.

In accumulated skew, every data, even outlier, is accumu-

lated in the data set. With vast data and time, this method pro-

vides stable and reliable result. However, in a short period of

time, accumulated skew is dramatically influenced by outliers.

Moreover, errors caused by the outliers continuously affect

the result for all the following computation. For example, as

shown in Fig. 4(a), estimated skews fluctuate enormously at

the red circle part due to huge network delay at this time.

2) Skew with Sliding-Windows: Comparing with the accu-

mulated skew, a sliding-window skew takes sampling only

from the most recently short period of time. This prevent the

largely fluctuated data from poisoning skew estimation in long

term.

For sampling windows with size w, the sliding-windows

skew LR(Nij) must satisfy j − i = w.

Fig. 4(b) shows the result of sliding-windows skew with

window size 200; the suggestion on the window size is

provided in section V.

As the result indicates, sliding-windows reduced the effect

of outliers which is outside the sliding window, but if outliers

exist inside the window, this method still suffer from the

outlier effect. Therefore, to filter out these outliers, a method

to choose the suitable inliers is needed, especially under the

environment that huge network delay happens randomly.

Digressively, one may notice that the skew estimation in

Fig. 4(b) are all 0 in the beginning. This is because the window

size w is 200, the skew estimation before 200 are marked as 0

for no enough data. All sliding-windows based methods have

this restriction.

3) Sliding-Windows Skew with Lower-Bound Filter: To

disassemble the effect caused by outliers, the most effective

method is to filter them out, so a lower bound approach would

be helpful here. For example, huge network delay exists at

red circle part in Fig. 3 (i.e. the outliers); these points mostly

caused by network delay may affect the correctness of skew

estimation enormously. In contrast, the offsets lie in the lower

part are relative smooth. Hence, the closest skew estimation is

calculated from the lower-bound dataset, as previous research

did [3]. In [3], Moon et al. suggests piecewise minimum

algorithm as a simple and efficient method for estimating clock

skew. Since piecewise minimum can be used to extract the

lower bound of offset, the algorithm is suitable to serve as the

low-bound filter.

For sliding-windows skew with lower-bound filter, the local

minimum offset is picked for every m packets in each sliding

window w. Thus, the amount of sampling data for skew esti-

mation is reduced to ⌊w/m⌋. With this lower-bound filter, only

packets with minimal network delay are collected, thereby

minimizing the influence of the network. This lower-bound

skew estimation can be denoted as LR(Min(Nij)), where

Min(Nij) is the data set of local minimum offset between

ith request and jth.

As shown in Fig. 4(c), the skew estimation is much

smoother than the one in Fig. 4(b); the window size w is

529

200, m is 5 in this example, so the total data for one skew

estimation is 40. By this method, the clock skew estimation

hence stable and capable for reducing the effect of huge

network delay.

4) Accumulated Sliding-Windows Skew with Lower-Bound

Filter: Since the local minimum offset is useful to find the

lower-bound skew, we further calculate the accumulated skews

with these local minimum dataset and plot the corresponding

skew distribution diagram in Fig. 4(d). We found that this

method can both reduce the effect of huge network delay

and converge rapidly within 20 packets. This skew estimation

can be denoted as LR(Min(N1i)) while receiving ith request

from the client.

As a result, by comparing these four types of skew esti-

mations, the lower-bound filter has the best performance on

filtering out the huge network delay in our experiments.

B. Quick Piecewise Minimum Algorithm

The quick piecewise minimum algorithm is achieved by

separating data into n segments and picking two minimum

offsets from first segment and fourth segment respectively. By

connecting these two minimum offsets, a slope of this line

can be obtained. In our experiment, n is set to 4. As shown

in Fig. 5, the black circles are offsets, the red squares are the

corresponding segments, and the two blue squares are the two

local minimum offsets. Thus, the estimated skew is the slope

of the black line between two blue squares.

As long as the data set is stable enough, the quick piecewise

minimum algorithm can achieve high stability with little

computation. Fig. 6 illustrates the skew estimated by this

method based on the same data with Fig. 3. Since the quick

piecewise minimum algorithm has low computation overhead,

it can be efficiently apply to other cloud service.

C. Jump Point Detection and Elimination

During packet collection period, a jump point of offset

occurs if the client is performing time synchronization with

a time server or roaming between different network providers.

An example of jump point, as shown in Fig. 7, is marked by

red circle. If this jump point phenomenon does not detected

by server, the skew estimation process would be affected by

the mass offset error, reacting in an inaccurate result. Thus,

an approach to detect jump point occurrence is needed while

implementing the skew estimation.

The main idea of this algorithm is to divide sequential times-

tamps into groups, where every pair of consecutive timestamps

in a group produces only a small time difference. Suppose diff

represents the difference between two adjoining offsets; the

diff is denoted as dij , where dij = oj − oi, ∀i 6= j, i < j.

Also, another threshold k is set to check if the diff is too

large, thereby detecting the jump point. The basic jump point

detection algorithm is as follows:

1) Pick the local minimum offsets for every p packets.

2) Compute the diff between every pairs of contiguous

local minimum offsets.

3) Following detection process is divided into two classes:

(a) Accumulated Skew

(b) Skew with Sliding-Windows

(c) Sliding-Windows Skew with Lower-Bound Filter

(d) Accumulated Sliding-Windows Skew with Lower-Bound Filter

Fig. 4. Comparison of each skew estimation by applying linear regression.

530

Server Time (second)

Offset

(Second)

Fig. 5. Implementation of quick piecewise minimum algorithm.

Fig. 6. Skew estimation by applying quick piecewise minimum algorithm.

Fig. 7. Offset distribution diagram between server and client with a jump
point.

Server Time (second)

Offset

(Second)

Jump Point

Fig. 8. Detection of jump point between two segments.

a) If derived diffs are all positive or all negative:

• Denote the median of derived diffs as Med(diff).
• If there exists a diff that diff > k · Med(diff), a

jump point exists inside these p packets.

b) If only part of derived diffs are positive:

• If positive diffs are followed by one negative diff

at x, this x is the jump point.

• Similarly, negative diffs followed by one positive

diff is processed vice versa.

To prevent the error caused by the jump point, the skew es-

timation is executed before and after the jump point separately

by quick piecewise minimum algorithm. As shown in Fig. 8,

while the jump point is located at jth segment, the first half

estimated skew is calculated from 1th to (j−2)th segment; the

second half is calculated from (j + 1)th to the last segment.

Two segments are omitted from skew estimation because the

jump point may locate at (j − 1)th or jth segment. By this

segmental method, all candidate skews can be calculated.

To represent the moderate value of all skews, we pick the

median of these candidate skews as the estimated skew for

the corresponding client.

A homogeneous case of jump point is a time gap, which

is a period of time of blank packets, as shown in Fig. 9.

A time gap generally arises when user is moving around,

causing the change of network connection, resulting in a period

of disappearance. To detect this kind of jump point, simply

checking xij , where j = i + 1. If xij is larger than twice of

the assigned AJAX packet sending period, it is considered as

a time gap, and is treated as a jump point as well.

V. EXPERIMENTS AND EVALUATION

To evaluate the proposed host identify method, two different

experiments are held in this section. Principal parameters of

our experiments are set as follows.

To obtain high precision offsets, at least 200 AJAX packets

are collected for skew estimation in every experiment. Since

the time resolution of Javascript is 1 ms, at least 1000 seconds

is required to detect a offset up to 1 microsecond resolution.

Since our AJAX script generates a packet for every 5 seconds,

the minimum number of packets required would be 1000/5,

or 200.

531

Fig. 9. Offset distribution diagram between server and client with network
disconnection.

TABLE I
THE ESTIMATED SKEW OF THE SAME DEVICE UNDER DIFFERENT

NETWORK ENVIRONMENTS

Network type Skew estimation Packets No. of IP addr.

LAN -21.91 ppm 1001 1

-23.24 ppm 207 1

-22.74 ppm 13322 1

ADSL -21.48 ppm 5837 1

-21.08 ppm 1400 1

3G -23.24 ppm 951 1

-23.71 ppm 1027 1

Wi-Fi -21.79 ppm 9810 1

-23.06 ppm 1470 1

Tor -22.53 ppm 15007 55

-23.22 ppm 12922 57

-22.88 ppm 24120 108

VM -113.19 ppm 868 1

-114.22 ppm 1001 1

-6.40 ppm 1001 1

-6.83 ppm 890 1

For the jump point detection, the parameter p is set to 20,

and the threshold k is also set to 20. p and k are adjustable

according to different network environments; with parameters

of smaller values, the jump point detecting process leads to a

much sensitive result.

A. Same Device under Different Networks

The first experiment is performed with a laptop connecting

to our timestamp collection system via multiple network ac-

cess techniques. Host behind Tor network and virtual machine

(VM) are included in this experiment as well for reference. The

purpose of this experiment is to measure the skew variations

of one device under different network environments, thereby

simulating the situations that a device logins the cloud service

from various kind of networks. In this experiment, the device

is an Apple MacBook with a 2.4 GHz Intel Core 2 Duo

processor, running MAC OS X 10.6.8, and the estimated skew

is calculated by jump point detection with quick piecewise

minimum algorithm. As shown in table I, we at first connect

this laptop to the server via common networks such as LAN,

ADSL, 3G, and Wi-Fi.

According to the first four results, it justifies that clock

skew estimation is relative independent regardless of network

access media. It is worthy to notice that the estimated skew is

fluctuated within 2.16 ppm, from -21.08 ppm to -23.24 ppm.

Since the clock skew may fluctuate with temperature men-

tioned in [5,6,8], these experimental results seems acceptable

considering the short timestamp collecting time and possible

noise related to network environments.

With the skew fluctuation, it is a trend-off to set a rea-

sonable tolerance threshold for detecting malicious login. If

the threshold is too small, the false positive rate would be

unacceptably high, which means that one device might be

treated as different device quite often. On the contrary, if the

threshold is too large, the false negative rate would raise, which

leads to high probability of accepting unregistered devices.

Thus, after analyzing the table I, we consider a threshold of

±1 ppm appropriate at the present stage. This threshold derives

a probability of misjudgement 7.4%, or (2.16 − 2)/2.16,

assuming the probability density function of skew fluctuation

is uniformly distributed.

Furthermore, the experimental environment in Tor is also

listed in table I. In our experimental results, 200 packets is not

enough to calculate a stable estimation. However, the estimated

skews diverge and are close to the common network cases,

as long as the collecting time is long enough. Finally, for

client hosts running inside a VM, the skews are stable but

unpredictably different from the real one. Kohno et al. [4]

had indicated that virtual machines do not have constant clock

skews, and our experiments also shows the same results. In

addition, we found that the estimated skew under a VM is

relatively stable without rebooting it; however, after restarting

the VM, the skew randomly changes to another stable value.

As shown in table I, the estimated skews of two clients are

-113.19 ppm and -114.22 ppm respectively, but their skews

changed to -6.4 ppm and -6.83 ppm after rebooting the system.

B. Skew Distribution of Different Devices

To study the distinguishable property of clock skew, we

collected clock skews of 100 devices estimated by the same

timestamp collection server. The results vary from 67 ppm

to -499 ppm, and only the most close 90 skews, sorted by

their values, are illustrated in Fig. 10. Each cross in this

figure represents one device and the y coordinate stands for

its clock skew. Each clock skew is bound by an interval of ±1
ppm range. As shown in this figure, many devices have their

intervals overlapped with others, which means that there exists

not negligible probability a user may pass the identification test

with unregistered devices. The worst case happens at device

number 20, whose interval overlaps with other 8 devices.

Therefore, with the threshold of 1 ppm, the maximum false

negative rate is currently 8%. We believe that further analysis

532

10 20 30 40 50 60 70 80 90 100

−5

−4

−3

−2

−1

0

x 10
−5

Device number

E
s
ti
m

a
te

d
 s

k
e

w
 v

a
lu

e

Fig. 10. The sorted skew of estimated devices

on skew estimation of different network environments would

help reducing the tolerance threshold, thus reduce both false

positive rate and false negative rate.

VI. CONCLUSIONS AND FUTURE WORK

This paper addressed the client device identification issue

in cloud environment, and proposed a clock skew based

fingerprinting technique and a practical scenario. Client device

identification strengthen the account safety, and the proposed

scenario suggests a potential secondary authentication ap-

proach without users’ awareness most of the time. Several

classical methods are introduced and implemented to estimate

the skews of client devices, and the treatment of jump points,

usually caused by switching network or temporary discon-

nection, is also discussed at the first time. To examine the

effectiveness of clock skew, we implemented a web based

skew estimation platform and conducted two experiments. The

initial study includes over 100 client devices from 5 different

network media. The experiment results showed that the false

positive rate and the false negative rate, in the worst case,

are both no more than 8% when the tolerance threshold is

set to ±1 ppm. With the potential of clock skew fingerprint

be revealed, the further work would include improving the

precision of skew estimation utilizing linear programming

method and accumulating the knowledge of skew fluctuation

in different network media.

ACKNOWLEDGMENT

This work was supported under the National Science Coun-

cil Grants 100-2218-E-011-008.

REFERENCES

[1] P. Eckersley, “How unique is your web browser?” in Privacy Enhancing

Technologies. Springer Berlin / Heidelberg, 2010, vol. 6205, pp. 1–18.

[2] V. Paxson, “On calibrating measurements of packet transit times,”
in Proceedings of the 1998 ACM SIGMETRICS joint international

conference on Measurement and modeling of computer systems, ser.
SIGMETRICS ’98/PERFORMANCE ’98. New York, NY, USA: ACM,
1998, pp. 11–21.

[3] S. Moon, P. Skelly, and D. Towsley, “Estimation and removal of clock
skew from network delay measurements,” in INFOCOM ’99. Eighteenth

Annual Joint Conference of the IEEE Computer and Communications

Societies. Proceedings. IEEE, vol. 1, mar 1999, pp. 227 –234 vol.1.
[4] T. Kohno, A. Broido, and K. Claffy, “Remote physical device finger-

printing,” in IEEE Transactions on Dependable and Secure Computing,
vol. 2, no. 2, April-June 2005, pp. 93–108.

[5] S. J. Murdoch, “Hot or not: revealing hidden services by their clock
skew,” in CCS ’06: Proceedings of the 13th ACM Conference on

Computer and Communications Security, New York, NY, USA, 2006,
pp. 27–36.

[6] S. Zander and S. J. Murdoch, “An improved clock-skew measurement
technique for revealing hidden services,” in Proceedings of the 17th

conference on Security symposium. Berkeley, CA, USA: USENIX
Association, 2008, pp. 211–225.

[7] D.-J. Huang, W.-C. Teng, C.-Y. Wang, H.-Y. Huang, and J. M. Heller-
stein, “Clock skew based node identification in wireless sensor net-
works,” in IEEE Global Communications Conference, 2008, pp. 1877–
1881.

[8] M. Uddin and C. Castelluccia, “Toward clock skew based wireless sensor
node services,” in Wireless Internet Conference (WICON), 2010 The 5th

Annual ICST, March 2010, pp. 1–9.
[9] Top threats to cloud computing v1.0. [Online]. Available:

https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
[10] J. Hall, M. Barbeau, and E. Kranakis, “Detection of transient in radio

frequency fingerprinting using signal phase,” in Proceedings of IASTED

International Conference on Wireless and Optical Communications

(WOC ’03), 2003.
[11] R. M. Gerdes, T. E. Daniels, M. Mina, and S. F. Russell, “Device iden-

tification via analog signal fingerprinting: A matched filter approach,”
in Proceedings of the 2006 Network and Distributed System Security

Symposium (NDSS ’06), February 2006.
[12] K. Bonne Rasmussen and S. Capkun, “Implications of radio fingerprint-

ing on the security of sensor networks,” Sept. 2007, pp. 331–340.
[13] S. Jana and S. K. Kasera, “On fast and accurate detection of unauthorized

wireless access points using clock skews,” in MobiCom ’08: Proceedings

of the 14th ACM international conference on Mobile computing and

networking, 2008, pp. 104–115.

533

